
&:.L
W i

processing

Wi

' < ? ,
«£*•»•■

-s-

,.!. JS3« £ - . .,
yyjf .■; : ;•>•:....A-.;■■-..
ivv^-*. ii-- - —s^-;^ -'■■'- .'

. ,, ,
^iV-'*s '■■- ■:.*«;,^.

St.-- ■-*■ -■ ' ~-'l^->~:,-*

V^.>\V'.'/-.v'.'

20010302 180
ngs

Part I (June 21)

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Faculdade de Engenharia
da Universidade do Porto

2000 June, 21 22 23

A<3 FOI-06-0<?-7?

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

12 January 2001

3. REPORT TYPE AND DATES COVERED

Conference Proceedings

4. TITLE AND SUBTITLE

VECPAR - 4th International Meeting on Vector and Parallel Processing

 Part I
6. AUTHOR(S)

Conference Committee

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

FEUP-FACULDADE DE ENGENHARIA DA Universidade do Porto
RUA DOS BRAGAS
Porto 4050-123
Portugal

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
PSC802BOX14
FPO 09499-0200

11. SUPPLEMENTARY NOTES

5. FUNDING NUMBERS

F61775-00-WF071

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

CSP 00-5071

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

A

The Final Proceedings for VECPAR - 4th International Meeting on Vector and Parallel Processing, 21 June 2000 -
23 June 2000, an interdisciplinary conference covering topics in all areas of vector, parallel and distributed
computing applied to a broad range of research disciplines with a focus on engineering. The principal
topics include: Cellular Automata, Computational Fluid Dynamics, Crash and Structural Analysis,
Data Warehousing and Data Mining, Distributed Computing and Operating Systems, Fault Tolerant
Systems, Imaging and Graphics, Interconnection Networks, Languages and Tools, Numerical
Methods, Parallel and Distributed Algorithms, Real-time and Embedded Systems, Reconfigurable
Systems, Linear Algebra Algorithms and Software for Large Scientific Problems, Computer
Organization, Image Analysis and Synthesis, and Nonlinear Problems.

14. SUBJECT TERMS

EOARD, Modelling & Simulation, Parallel Computing, Distributed Computing

15. NUMBER OF PAGES
Three volumes:
1016 pages total

(plus TOC, and front matter)
16. PRICE CODE

N/A
17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19, SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102

VECPAR'2000
4rd International Meeting on

Vector and Parallel Processing

2000, June 21-23

Conference Proceedings
Parti

(Wednesday, June 21)

FEUP
Faculdade de Engenharia
da Universidade do Porto

Preface

This book is part of a 3-volume set with the written versions of all invited talks, papers and
posters presented at VECPAR'2000 - 4th International Meeting on Vector and Parallel
Processing.

The Preface and the Table of Contents are identical in all 3 volumes (one for each day of the
conference), numbered in sequence. Papers are grouped according to the session where they
were presented.

The conference programme added up to a total of 6 plenary and 20 parallel sessions, comprising
6 invited talks. 66 papers and 11 posters.

It is our great pleasure to express our gratitude to all people that helped us during the
preparation of this event. The expertise provided by the Scientific Committee was crucial in the
selection of more than 100 abstracts submitted for possible presentation.

Even at the risk of forgetting some people, we would like to express our gratitude to the
following people, whose collaboration went well beyond the call of duty. Fernando Jorge and
Vitor Carvalho. for creation and maintenance of the conference web page; Alice Silva for the
secretarial work; Dr. Jaime Villate for his assistance in organisational matters; and Nuno Sousa
and Alberto Mota, for authoring the procedure for abstract submission via web.

Porto, June 2000 The Organising and Scientific Committee Chairs

VECPAR'2000 was held at Fundacäo Dr. Antonio Cupertino de Miranda, in Porto (Portugal),
from 21 to 23 June, 2000.

VECPAR is a series of conferences, on vector and parallel computing organised by the Faculty
of Engineering of the University of Porto (FEUP) since 1993.

Committees

Organising Committee

A. Augusto de Sousa (Chair)
Jose Couto Marques (Co-chair)
Jose Masalhäes Cruz

Local Advisory Committee

Carlos Costa
Raimundo Delgado
Jose Marques dos Santos
Fernando Nunes Ferreira
Li'gia Ribeiro
Jose Silva Matos
Paulo Tavares de Castro
Raul Vidal

Scientific Committee

J. Palma (Chair)
J. Dongarra (Co-chair)
V. Hernandez (Co-chair)

P. Amestoy
T. Barth
A. Campilho
G. Candler
A. Chalmers
B. Chapman
A. Coutinho
J. C. Cunha
F. d'Almeida
M. Dayde
J. Dekeyser
P. Devloo
J. Duarte
I. Duff
D. Falcäo
J. Fortes
S. Gama
M. Giles
L. Giraud
G. Golub
D. Heermann
W. Janke
M. Kamel
M.-T. Kechadi
D. Knight
V. Kumar
R. Lohner
E. Luque
J. Macedo
P. Marquet
P. de Miguel
F. Moura
E. Onate
A. Padilha
R. Pandey
M. Peric
T. Priol
R. Ralha
M. Ruano
D. Ruiz
H. Ruskin
J. G. Silva
F. Tirado
B. Tourancheau
M. Valero
A. van der Steen
J. Vuillemin
J.-S. Wang
P. Watson
P. Welch
E. Zapata

Univ. do Porto. Portugal
Univ. of Tennessee and Oak Ridge National Lab.
Univ. Politecnica de Valencia, Spain

USA

ENSEEIHT-IRIT. Toulouse, France
NASA Ames Research Center. USA
Univ. do Porto, Portugal
Univ. of Minnesota, USA
Univ. of Bristol, England
Univ. of Southampton, England
Univ. Federal do Rio de Janeiro, Brazil
Univ. Nova de Lisboa, Portugal
Univ. do Porto, Portugal
ENSEEIHT-IRIT, Toulouse, France
Univ. des Sciences et Technologies, Lille, France
Univ. Estadual de Campinas (UNICAMP), Brazil
Univ. do Porto, Portugal
Rutherford Appleton Lab., England, and CERFACS, France
Univ. Federal do Rio de Janeiro, Brazil
Purdue Univ., USA
Univ. do Porto, Portugal
Univ. of Oxford, England
CERFACS, France
Stanford Univ., USA
Univ. Heidelberg,Germany
Univ. of Leipzig, Germany
Univ. of Waterloo. Canada
Univ. College Dublin, Ireland
Rutgers-State Univ. of New Jersey, USA
Univ. of Minnesota, USA
George Mason Univ., USA
Univ. Autönoma de Barcelona, Spain
Univ. do Porto, Portugal
Univ. des Sciences et Technologies, Lille, France
Univ. Politecnica de Madrid, Spain
Univ. do Minho, Portugal
Univ. Politecnica de Catalunya, Spain
Univ. do Porto, Portugal
Univ. of Southern Mississipi, USA
Technische Univ. Hamburg-Harrurg, Germany
IRISA/INRIA, France
Univ. do Minho, Portugal
Univ. do Algarve, Portugal
ENSEEIHT-IRIT, Toulouse, France
Dublin City Univ., Ireland
Univ. de Coimbra, Portugal
Univ. Complutense, Spain
Univ. Claude Bernard de Lyon, France
Univ. Politecnica de Catalunya, Spain
Utrecht Univ., The Netherlands
Ecole Normale Superieure. Paris, France
National Univ. of Singapore, Singapore
Univ. of Newscastle, England
Univ. of Kent at Canterbury, England
Univ. de Malaga, Spain

Sponsoring Organisations

The Organising Committee is very grateful to all sponsoring organisations for their support:

FEUP - Faculdade de Engenharia da Universidade do Porto
UP - Universidade do Porto

CMP - Cämara Municipal do Porto
EOARD - European Office of Aerospace Research and Development
FACM - Fundacäo Dr. Antonio Cupertino de Miranda
FCCN - Fundacäo para a Computa?äo Cientifica Nacional
FCG - Fundacäo Calouste Gulbenkian
FCT - Fundacäo para a Ciencia e a Tecnologia
FLAD - Fundacäo Luso-Americana para o Desenvolvimento
ICCTI/BC - Inst, de Cooperacäo Cientifica e Tecnolögica Internacional/British Council
INESC Porto - Instituto de Engenharia de Sistemas e de Computadores do Porto
OE - Ordern dos Engenheiros
Porto Convention Bureau

ALCATEL
CISCO Svstems
COMPAQ
MICROSOFT
NEC European Supercomputer Systems
NORTEL Networks
SIEMENS

PARTI (June 21, Wednesday)

Invited Talk
(June 21. Wednesday. Auditorium. 10:50-11:50)

High Performance Computing on the Internet I
Ian Foster, Argonne National Laboratory and the University of Chicago (USA)

Session 1: Distributed Computing and Operating Systems
June 21. Wednesday (Auditorium, 11:50-12:50)

Implementing and Analysing an Effective Explicit Coscheduling Algorithm on a NOW
Francesc Solana, Francesc Gine, Fermin Molina, Porfidio Hernandez and Emilio Luque
(Spain) 31

An Approximation Algorithm for the Static Task Scheduling on Multiprocessors
Janez Brest. Jaka Jejcic, Aleksander Vreze and Viljem Zumer (Slovenia) 45

A New Buffer Management Scheme for Sequential and Looping Reference Pattern Applications
Jun-Young Cho. Gyeong-Hun Kim, Hong-Kyu Kang and Myong-Soon Park (Korea) 57

Session 2: Languages and Tools
June 21. Wednesday (Room A. 11:50-12:50)

Parallel Architecture for Natural Language Processing
Ricardo Annes (Brazil) 69

A Platform Independent ParallelisingTool Based on Graph Theoretic Models
Oliver Sinnen and Leonel Sousa (Portugal) 81

A Tool for Distributed Software Design in the CORBA Environment
Jan Kvviatkowski. Maciej Przewozny and Jose C. Cunha (Poland) 93

Session 3: Data-warehouse, Education and Genetic Algorithms
June 21. Wednesday (Auditorium, 14:30-15:30)

Parallel Performance of Ensemble Self-Generating Neural Networks
Hirotaka Inoue and Hiroyuki Narihisa (Japan) 105

An Environment to Learn Concurrency
Giuseppina Capretti, Maria Rita Laganä and Laura Ricci (Italy) 119

Dynamic Load Balancing Model: Preliminary Results for a Parallel Pseudo-Search Engine
Indexers'Crawler Mechanisms using MPI and Genetic Programming

Reginald L. Walker (USA) 133

Session 4: Architectures and Distributed Computing
June 21. Wednesday (Room A. 14:30-15:30)

A Novel Collective Communication Scheme on Packet-Switched 2D-mesh Interconnection
MinHwan Ok and Myong-Soon Park (South Korea) 147

Enhancing parallel multimedia sen'ers through new hierarchical disk scheduling algorithms
Javier Fernandez. Felix Garcia and Jesus Carretero (Spain) 159

A Parallel l'RML9r Sen-er Based on Active Objects
Thomas Rischbeck and Paul Watson (United Kingdom) 169

Invited Talk
(June 21. Wednesday. Auditorium. 15:30-16:30)

Cellular Automata: Applications 183
Dietrich Stauffer. Institute for Theoretical Physics. Cologne University (Germany)

Session 5: Cellular A utomata
June 21. Wednesday (Auditorium. 17:00-18:20)

The Role of Parallel Cellular Programming in Computational Science
Domenico Talia (Italy) 191

A Novel Algorithm for the Numerical Simulation of Collision-free Plasma
David N'unn (UK) 205

Parallelization of a Density Functional Program for Monte-Carlo Simulation of Large
Molecules

J.M. Pacheco and Jose Luis Martins (Portugal) 217

An Efficient Parallel Algorithm to the Numeric Solution of Schrodinger Equation
Jesus Vigo_Aguiar. Luis M. Quintales and S. Natesan (Spain) 231

Session 6: Linear Algebra
June 21. Wednesday (Room A. 17:00-18:20)

An Efficient Parallel Algorithm for the Symmetric Tridiagonal Eigenvalue Problem
Maria Antönia Forjaz and Rui Ralha (Portugal) 241

Performance of Automatically Tuned Parallel GMRES(m) Method on Distributed Memoiy
Machines

Hisayasu Kuroda. Takahiro Katagiri and Yasumasa Kanada (Japan) 251

A Methodolog}' for Automatically Tuned Parallel Tri-diagonalization on Distributed Memory
Vector-Parallel \ fachines

Takahiro Katagiri. Hisayasu and Yasumasa Kanada (Japan) 265

A new Parallel Approach to the Toeplitz Inverse Eigen-problem using Newton-like Methods.
Jesus Peinado and Antonio Vidal (Spain) 279

PARTII (June 22, Thursday)

Session 7: Real-time and Embedded Systems
June 22. Thursday (Auditorium, 9:00-10:20)

Solving the Quadratic 0-1 Problem
G. Schütz. F.M. Pires and A.E. Ruano (Portugal) 293

A Parallel Genetic Algorithm for Static Allocation of Real-time Tasks
Leila Baccouche (Tunisia) 307

Value Prediction as a Cost-effective Solution to Improve Embedded Processor Performance
Silvia Del Pino. Luis Pifiuel. Rafael A.Moreno and Francisco Tirado (Spain) 321

Parallel Pole Assignment of Single-Input Systems
Maribel Castillo. Enrique S. Quintana-Orti, Gregorio Quintana-Orti and Vicente
Hernandez (Spain) 335

Session 8: Linear Algebra
June 22. Thursday (Room A. 9:00-10:20)

Non-stüiionary parallel Newton iterative methods for non-linear problems
Josep Arnal. Violeta Migallön and Jose Penades (Spain) 343

Modified Cholesky Factorisation of Sparse Matrices on Distributed Memory Systems: Fan-in
and Fan-out Algorithms with Reduced Idle Times

Maria J. Martin and Francisco F. Rivera (Spain) 357

An Index Domain for Adaptive Multi-grid Methods
Andreas Schramm (Germany) 371

PAR.4DEIS: An STL Extension for Data Parallel Sparse Matrix Computation
Frank Delaplace and Didier Remy (France) 385

Invited Talk
(June 22. Thursday. Auditorium. 10:50-11:50)

Parallel Branch-and-Boundfor Chemical Engineering Applications: Load Balancing and
Scheduling Issues 463

Chao-Yang Gau and Mark A. Stadtherr. University of Notre Dame (USA)

Posters
The poster session will be held simultaneously with the Industrial session.
(June 22. Thursday. Entrance Hall. 11:50-12:50)

Installation routines for linear algebra libraries on LANs
Domingo Gimenez and Gines Carrillo (Spain) 393

Some Remarks about Functional Equivalence ofFilateral Linear Cellular Arrays and Cellular
Arrays with Arbitrary Unilateral Connection Graph

V. Varshavsky and V. Marakhovsky (Japan) 399

Preliminary Results of the PREORD Project: A Parallel Object Oriented Platform for DMS
Systems

Pedro Silva. J. Tome Saraiva and Alexandre V. Sousa (Portugal) 407

Dynamic Page Aggregation for Nautilus DSM System-A Case Study
Mario Donato Marino and Geraldo Lino de Campos (Brazil) 413

A Parallel Algorithm for the Simulation of Water Quality in Water Supply Networks
J.M Alonso. F. Alvarruiz, D. Guerrero, V. Hernandez, P.A. Ruiz and A.M. Vidal (Spain) 419

A visualisation tool for the performance prediction of iterative methods in HPF
F. F Rivera, J.J. Pombo, T.F. Pena, D.B. Heras, P. Gonzalez, J.C. Cabaleiro and V.
Blanco (Spain) 425

A Methodology for Designing Algorithms to Solve Linear Matrix Equations
Gloria Martinez, German Fabregat and Vicente Hernandez (Spain) 431

A new user-level threads library: dthreads
A. Garcia Dopico, A. Perez amd M. Martinez Santamarta (Spain) 437

Grain Size Optimisation of a Parallel Algorithm for Simulating a Laser Cavity on a
Distributed Memory Multi-computer

Guillermo Gonzälez-Talavän (Spain) 443

Running PVMApplications in the PUNCH Wide Area Network-Computing Environment
Dolors Royo. Nirav H. Kapadia and Jose A.B. Fortes (USA) 449

Simulating 2-D Froths: Fingerprinting the Dynamics
Heather Ruskin and Y. Feng (Ireland) 455

Industrial Session 1
(June 22. Thursday. Auditorium. 11:50-12:50)

NEC European Supercomputer Systems: Vector Computing: Past Present and Future
Christian Lantwin (Manager Marketing)

CISCO Systems: 120!6 Terabit System Overview
Graca Carvalho. Consulting Engineer, Advanced Internet Initiatives

Industrial Session 2
(June 22. Thursday. Room A. 11:50-12:50)

NORTEL Networks: High Speed Internet to Enable High Performance Computing
Kurt Bertone. Chief Technology Officer

COMPAQ
Title and speaker to be announced

Session 9: Numerical Methods and Parallel Algorithms
June 22. Thursday (Auditorium. 14:30-15:30)

A Parallel Implementation of an Interior-Point Algorithm for Multicommodity Network Flows
Jordi Castro and Antonio Frangioni (Spain) 491

A Parallel Algorithm for the Simulation of the Dynamic Behaviour of Liquid-Liquid Agitated
Columns

E.F Gomes. L.M. Ribeiro, P.F.R. Regueiras and J.J.C. Cruz-Pinto (Portugal) 505

Performance Analysis and Modelling of Regular Applications on Heterogeneous Workstation
Networks

Andrea Clematis and Angelo Corana (Italy) 519

Session 10: Linear Algebra
June 22. Thursday (Room A. 14:30-15:30)

Parallelization of a Recursive Decoupling Method for Solving Tridiagonal Linear System on
Distributed Memoiy Computer

M. Amor. F. Arguello. J. Lopez and E. L. Zapata (Spain) 531

Fully vectorized solver for linear recurrence system with constant coefficients
Przemyslavv Stpiczynski and Marcin Paprzycki (Poland) 541

Parallel Solvers for Discrete-Time Periodic Riccati Equations
Rafael Mayo . Enrique S. Quintana-Orti, Enrique Arias and Vicente Hernandez (Spain) 553

Invited Talk
(June 22. Thursday. Auditorium. 15:30-16:30)

Thirty Years of Parallel Image Processing 559
Michael J. B. Duff, university College London (UK)

Session 11: Imaging
June 22. Thursday (Auditorium. 17:00-18:00)

Scheduling of a Hierarchical Radiosity Algorithm on Distributed-Memory Multiprocessor
M. Amor. E.J. Padrön. J. Tourino and R- Doallo (Spain) 581

Efficient Low and Intermediate Level Vision Algorithms for the LAPMAM Image Processing
Parallel Architecture

Domingo Torres. Herve Mathias, Hassan Rabah and Serge Weber (Mexico) 593

Parallel Image Processing System on a Cluster of Personal Computers
J. Barbosa. J. Tavares and A. J. Padilha (Portugal) 607

Session 12: Reconfigurable Systems
June 22. Thursday (Room A. 17:00-18:00)

Improving the Performance of Heterogeneous DSMs via Multithreading
Renato J.O. Figueiredo, Jeffrey P. Bradford and Jose A.B. Fortes (USA) 621

Solving the Generalized Sylvester Equation with a Systolic
Gloria Martinez. German Fabregat and Vicente Hernandez (Spain) 633

Parallelizing 2D Packing Problems with a Reconfigurable Computing Subsystem
J. Carlos Alves. C. Albuquerque, J. Canas Ferreira and J. Silva Matos (Portugal) 647

PART III (June 23, Friday)

Session 13: Linear Algebra
June 23, Friday (Auditorium, 9:00-10:20)

A Component-Based Stiff ODE Solver on a Cluster of Computers
J.M. Mantas Ruiz and J. Ortega Lopera (Spain) 661

Efficient Pipelining of Level 3 BLAS Routines
Frederic Deprez and Stephane Domas (France) 675

A Parallel Algorithm for Solving the Toeplitz Least Square Problem
Pedro Alonso. Jose M. Badi'a and Antonio M. Vidal (Spain) 689

Parallel Preconditioning of Linear Systems Appearing in 3D Plastic Injection Simulation
D. Guerrero, V. Hernandez, J. E. Roman and A.M. Vidal (Spain) 703

Session 14: Languages and Tools
June 23. Friday (Room A, 9:00-10:20)

Measuring the Performance Impact of SP-restricted Programming
Arturo Gonzälez-Escribano et al (Spain) 715

A SCOOPP Evaluation on Packing Parallel Objects in Run-time
Joäo Luis Sobral and Alberto Jose Proenca (Portugal) 729

The Distributed Engineering Framework TENT
Thomas Breitfeld, Tomas Forkert, Hans-Peter Kersken, Andreas Schreiber. Martin
Strietzel and Klaus Wolf (Germany) 743

Suboptimal Communication Schedule for GEN_BLOCK Redistribution
Hyun-Gyoo Yook and Myong-Soon Park (Korea) 753

Invited Talk
(June 23. Friday, Auditorium. 10:50-11:50)

Finite Discrete Element Analysis of Multi-fracture and Multi-contact Phenomena 765
David Roger J. Owen, University of Wales Swansea (Wales, UK)

Session 15: Structural Analysis and Crash
June 23. Friday (Auditorium. 11:50-12:50)

Dynamic Multi-Repartitioning for Parallel Structural Analysis Simulations
Achim Basermann et al (Germany) 791

Parallel Edge-Based Finite-Element Techniques for Nonlinear Solid Mechanics
Marcos A.D. Martins, Jose L.D. Alves and Älvaro L.G.A. Coutinho (Brazil) 805

A Multiplatform Distributed FEMAnalysis System using PVMandMPI
Celio Oda Moretti, Tülio Nosueira Bittencourt and Luiz Fernando Martha (Brazil) 819

Session 16: Imaging
June 23. Friday (Room A. 11:50-12:50)

Synchronous Son-Local Image Processing on Orthogonal Multiprocessor Systems
Leonel Sousa and Oliver Sinnen (Portugal) 829

Reconfigurable Mesh Algorithm for Enhanced Median Filter
Byeong-Moon Jeon. Kyu-Yeol Chae and Chang-Sung Jeong (Korea) 843

Parallel Implementation of a Track Recognition System Using Hough Transform
Augusto Cesar Heluy Dantas, Jose Manoel de Seixas and Felipe Maia Galväo Franca
(Brazil) 857

Session 17: Computational Fluid Dynamics
June 23. Friday (Auditorium. 14:30-15:30)

Modelling of Explosions using a Parallel CFD-Code
C. Trover. H. Wilkening, R. Koppler and T. Huld (Italy) 871

Fluvial Flowing ofGuaiha River Estuary: A Parallel Solution for the Shallow Water Equations
Model

Rogerio Luis Rizzi. Ricardo Dorenles et al (Brazil) 885

Application of Parallel Simulated Annealing and CFDfor the Design of Internal Flow Systems
Xiaojian Wang and Murali Damodaran (Singapore) 897

Session 18: Numerical Methods and Parallel Algorithms
June 23. Friday (Room A. 14:30-15:30)

Parallel Algorithm for Fast Cloth Simulation
Sergio Romero. Luis F. Romero and Emilio L. Zapata (Spain) 911

Parallel Approximation to High Multiplicity Scheduling Problem via Smooth Multi-valued
Quadratic Programming

Maria Serna and Fatos Xhafa (Spain) 917

High Level Paralleltation of a 3D Electromagnetic Simulation Code with Irregular
Communication Patterns

Emmanuel Cagniot. Thomas Brandes, Jean-Luc Dekeyser. Francis Piriou. Pierre Boulet
and Stephane Genet (France) 929

Invited Talk
(June 23. Friday. Auditorium. 15:30-16:30)

Large-Eddy Simulations of Turbulent Flows, from Desktop to Supercomputer 939
Ugo Piomelli, Alberto Scotti and Elias Balaras, University of Maryland (USA)

Session 19: Languages and Tools
June 23. Friday (Auditorium. 17:00-17:40)

A Neural Network Based Tool for Semi-automatic Code Transformation
V. Pumell. P.H. Corr and P. Milligan (N. Ireland) 969

Multiple Device Implemen ion ofWMPl
Hernäni Pedroso and Joäo Gabriel Silva (Portugal) 979

Session 20: Cellular Automata
June 23. Friday (Room A. 17:00-17:40)

Optimisation with Parallel Computing
Sourav Kundu (Japan) 991

Power System Reliability by Sequential Monte Carlo Simulation on Multicomputer Platforms
Carmen L.T. Borges and Djalma M. Falcäo (Brazil) 1005

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Computational Grids*

Ian Foster
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne.IL 60439

Carl Kesselman
Information Sciences Institute

University of Southern California
Marina del Rev. CA 90292

In this introductory chapter, we lay the groundwork for the rest of the book by providing a more
detailed picture of the expected purpose, shape, and architecture of future grid systems. We structure
the chapter in terms of six questions that we believe are central to this discussion: Why do we need
computational grids? What types of applications will grids be used for? Who will use grids? How will
grids be used? What is involved in building a grid? And, what problems must be solved to make grids
commonplace? We provide an overview of each of these issues here, referring to subsequent chapters
for more detailed discussion.

1 Reasons for Computational Grids

Why do we need computational grids? Computational approaches to problem solving have proven
their worth in almost every field of human endeavor. Computers are used for modeling and simulat-
ing complex scientific and engineering problems, diagnosing medical conditions, controlling industrial
equipment, forecasting the weather, managing stock portfolios, and many other purposes. Yet. al-
though there are certainly challenging problems that exceed our ability to solve them, computers are
still used much less extensively than they could be. To pick just one example, university researchers
make extensive use of computers when studying the impact of changes in land use on biodiversity, but
city planners selecting routes for new roads or planning new zoning ordinances do not. Yet it is local
decisions such as these that, ultimately, shape our future.

There are a variety of reasons for this relative lack of use of computational problem-solving meth-
ods, including lack of appropriate education and tools. But one important factor is that the average
computing environment remains inadequate for such computationally sophisticated purposes. While
today's PC is faster than the Cray supercomputer of 10 years ago. it is still far from adequate for
predicting the outcome of complex actions or selecting from among many choices. That, after all. is
why supercomputers have continued to evolve.

'Reprinted by permission of Morgan Kaufmann Publishers from The Grid: Blueprint for a Future Computing Infras-
tructure. I. Foster and C. Kesselman (Eds). 1998.

FEUP - Faculdade de Engenharia da Universidade do Porto

1.1 Increasing Delivered Computation

We believe that the opportunity exists to provide users—whether city planners, engineers, or scientists—
with substantially more computational power: an increase of three orders of magnitude within five
years, and five orders of magnitude within a decade. These dramatic increases will be achieved by
innovations in a wide range of areas:

1. Technology improvement: Evolutionary changes in VLSI technology and microprocessor archi-
tecture can be expected to result in a factor of 10 increase in computational capabilities in the
next five years, and a factor of 100 increase in the next ten.

2. Increase in demand-driven access to computational power: Many applications have only episodic
requirements for substantial computational resources. For example, a medical diagnosis system
may be run only when a cardiogram is performed, a stockmarket simulation only when a user
recomputes retirement benefits, or a seismic simulation only after a major earthquake. If mecha-
nisms are in place to allow reliable, instantaneous, and transparent access to high-end resources,
then from the perspective of these applications it is as if those resources are dedicated to them.
Given the existence of multiteraFLOPS systems, an increase in apparent computational power
of three or more orders of magnitude is feasible.

3. Increased utilization of idle capacity: Most low-end computers (PCs and workstations) are often
idle: various studies report utilizations of around 309£ in academic and commercial environ-
ments [47]. [21]. Utilization can be increased by a factor of two. even for parallel programs [4].
without impinging significantly on productivity. The benefit to individual users can be sub-
stantially greater: factors of 100 or 1.000 increase in peak computational capacity have been
reported [41]. [75].

4. Greater sharing of computational results: The daily weather forecast involves perhaps 1014 nu-
merical operations. If we assume that the forecast is of benefit to 10' people, we have 1021

effective operations—comparable to the computation performed each day on all the world's
PCs. Few other computational results or facilities are shared so effectively today, but they
may be in the future as other scientific communities adopt a "big science" approach to com-
putation. The key to more sharing may be the development of collaboratories: "... centerfs]
without walls, in which the nation's researchers can perform their research without regard to
geographical location—interacting with colleagues, accessing instrumentation, sharing data and
computational resources, and accessing information in digital libraries" [48].

5. New problem-solving techniques and tools: A variety of approaches can improve the efficiency
or ease with which computation is applied to problem solving. For example, network-enabled
solvers [17]. [11] allow users to invoke advanced numerical solution methods without having
to install sophisticated software. Teleimmersion techniques [50] facilitate the sharing of com-
putational results by supporting collaborative steering of simulations and exploration of data
sets.

Underlying each of these advances is the synergistic use of high-performance networking, comput-
ing, and advanced software to provide access to advanced computational capabilities, regardless of the
location of users and resources.

1.2 Definition of Computational Grids

The current status of computation is analogous in some respects to that of electricity around 1910. At
that time, electric power generation was possible, and new devices were being devised that depended

VECPAR '2000 - 4th international Meeting on Vector and Parallel Processing

on electric power, but the need for each user to build and operate a new generator hindered use.
The truly revolutionary development was not, in fact, electricity, but the electric power grid and the
associated transmission and distribution technologies. Together, these developments provided reliable,
low-cost access to a standardized service, with the result that power—which for most of human history
has been accessible only in crude and not especially portable forms (human effort, horses, water power,
steam engines, candles)—became universally accessible. By allowing both individuals and industries
to take for granted the availability of cheap, reliable power, the electric power grid made possible both
new devices and the new industries that manufactured them.

By analogy, we adopt the term computational grid for the infrastructure that will enable the in-
creases in computation discussed above. A computational grid is a hardware and software infrastruc-
ture that provides dependable, consistent, pervasive, and inexpensive access to high-end computational
capabilities.

We talk about an infrastructure because a computational grid is concerned, above all, with large-
scale pooling of resources, whether compute cycles, data, sensors, or people. Such pooling requires
significant hardware infrastructure to achieve the necessary interconnections and software infrastruc-
ture to monitor and control the resulting ensemble. In the rest of this chapter, and throughout the
book, we discuss in detail the nature of this infrastructure.

The need for dependable service is fundamental. Users require assurances that they will receive pre-
dictable, sustained, and often high levels of performance from the diverse components that constitute
the grid: in the absence of such assurances, applications will not be written or used. The performance
characteristics that are of interest will vary widely from application to application, but may include
network bandwidth, latency, jitter, computer power, software services, security, and reliability.

The need for consistency of service is a second fundamental concern. As with electric power, we
need standard services, accessible via standard interfaces, and operating within standard parameters.
Without such standards, application development and pervasive use are impractical. A significant
challenge when developing standards is to encapsulate heterogeneity without compromising high-
performance execution.

Pervasive access allows us to count on services always being available, within whatever environment
we expect to move. Pervasiveness does not imply that resources are everywhere or are universally
accessible. We cannot access electric power in a new home until wire has been laid and an account
established with the local utility: computational grids will have similarly circumscribed availability
and controlled access. However, we will be able to count on universal access within the confines of
whatever environment the grid is designed to support.

Finally, an infrastructure must offer inexpensive (relative to income) access if it is to be broadly
accepted and used. Homeowners and industrialists both make use of remote billion-dollar power plants
on a daily basis because the cost to them is reasonable. A computational grid must achieve similarly
attractive economics.

It is the combination of dependability, consistency, and pervasiveness that will cause computational
grids to have a transforming effect on how computation is performed and used. By increasing the set
of capabilities that can be taken for granted to the extent that they are noticed only by their absence,
grids allow new tools to be developed and widely deployed. Much as pervasive access to bitmapped
displays changed our baseline assumptions for the design of application interfaces, computational grids
can fundamentally change the way we think about computation and resources.

1.3 The Impact of Grids

The history of network computing shows that orders-of-magnitude improvements in underlying tech-
nology invariably enable revolutionary, often unanticipated, applications ofthat technology, which in

FEUP - Faculdade de Engenharia da Universidade do Porto

turn motivate further technological improvements. As a result, our view of network computing has
undergone repeated transformations over the past 40 years.

There is considerable evidence that another such revolution is imminent. The capabilities of both
computers and networks continue to increase dramatically. Ten years of research on metacomputing
has created a solid base of experience in new applications that couple high-speed networking and
computing. The time seems ripe for a transition from the heroic days of metacomputing to more
integrated computational grids with dependable and pervasive computational capabilities and consis-
tent interfaces. In such grids, today's metacomputing applications will be routine, and programmers
will be able to explore a new generation of yet more interesting applications that leverage teraFLOP
computers and petabyte storage systems interconnected by gigabit networks. We present two simple
examples to illustrate how grid functionality may transform different aspects of our lives.

Today's home finance software packages leverage the pervasive availability of communication tech-
nologies such as modems. Internet service providers, and the Web to integrate up-to-date stock prices
obtained from remote services into local portfolio value calculations. However, the actual computa-
tions performed on this data are relatively simple. In tomorrow's grid environment, we can imagine
individuals making stock-purchasing decisions on the basis of detailed Monte Carlo analyses of future
asset value, performed on remote teraFLOP computers. The instantaneous use of three orders of
magnitude more computing power than today will go unnoticed by prospective retirees, but their lives
will be different because of more accurate information.

Today, citizen groups evaluating a proposed new urban development must study uninspiring
blueprints or perspective drawings at city hall. A computational grid will allow them to call on
powerful graphics computers and databases to transform the architect's plans into realistic virtual re-
ality depictions and to explore such design issues as energy consumption, lighting efficiency, or sound
quality. Meeting online to walk through and discuss the impact of the new development on their
community, they can arrive at better urban design and hence improved quality of life. Virtual reality-
based simulation models of Los Angeles, produced by William Jepson. and the walkthrough model of
Soda Hall at the University of California-Berkeley, constructed by Carlo Seguin and his colleagues,
are interesting exemplars of this use of computing [9].

1.4 Electric Power Grids

We conclude this section by reviewing briefly some salient features of the computational grid's name-
sake. The electric power grid is remarkable in terms of its construction and function, which together
make it one of the technological marvels of the 20th century. Within large geographical regions (e.g..
North America), it forms essentially a single entity that provides power to billions of devices, in a
relatively efficient, low-cost, and reliable fashion. The North American grid alone links more than ten
thousand generators with billions of outlets via a complex web of physical connections and trading
mechanisms [12]. The components from which the grid is constructed are highly heterogeneous in
terms of their physical characteristics and are owned and operated by different organizations. Con-
sumers differ significantly in terms of the amount of power they consume, the service guarantees they
require, and the amount they are prepared to pay.

Analogies are dangerous things, and electricity is certainly very different from computation in
many respects. Nevertheless, the following aspects of the power grid seem particularly relevant to the
current discussion.

Importance of Economics

The role and structure of the power grid are driven to a large extent by economic factors. Oil- and
coal-fired generators have significant economies of scale. A power company must be able to call upon

-4-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

reserve capacity equal to its largest generator in case that generator fails: interconnections between
regions allow for sharing of such reserve capacity, as well as enabling trading of excess power. The
impact of economic factors on computational grids is not well understood [34]. Where and when are
there economies of scale to be obtained in computational capabilities? Might economic factors lead
us away from today's model of a "computer on every desktop"? We note an intriguing development.
Recent advances in power generation technology (e.g.. small gas turbines) and the deregulation of
the power industry are leading some analysts to look to the Internet for lessons regarding the future
evolution of the electric power grid!

Importance of Politics

The developers of large-scale grids tell us that their success depended on regulatory, political, and
institutional developments as much as on technical innovation [12]. This lesson should be taken to
heart by developers of future computational grids.

Complexity of Control

The principal technical challenges in power grids—once technology issues relating to efficient gen-
eration and high-voltage transmission had been overcome—relate to the management of a complex
ensemble in which changes at a single location can have far-reaching consequences [12]. Hence, we find
that the power grid includes a sophisticated infrastructure for monitoring, management, and control.
Again, there appear to be many parallels between this control problem and the problem of providing
performance guarantees in large-scale, dynamic, and heterogeneous computational grid environments.

2 Grid Applications

What types of applications will grids be used for? Building on experiences in gigabit test beds [42]. [59].
the I-WAY network [19]. and other experimental systems, we have identified five major application
classes for computational grids, listed in Table 1 and described briefly in this section. More details
about applications and their technical requirements are provided in the referenced chapters.

2.1 Distributed Supercomputing

Distributed supercomputing applications use grids to aggregate substantial computational resources
in order to tackle problems that cannot be solved on a single system. Depending on the grid on
which we are working (see Section 3). these aggregated resources might comprise the majority of the
supercomputers in the country or simply all of the workstations within a company. Here are some
contemporary examples:

• Distributed interactive simulation (DIS) is a technique used for training and planning in the
military. Realistic scenarios may involve hundreds of thousands of entities, each with potentially
complex behavior patterns. Yet even the largest current supercomputers can handle at most
20.000 entities. In recent work, researchers at the California Institute of Technology have shown
how multiple supercomputers can be coupled to achieve record-breaking levels of performance.

• The accurate simulation of complex physical processes can require high spatial and temporal
resolution in order to resolve fine-scale detail. Coupled supercomputers can be used in such
situations to overcome resolution barriers and hence to obtain qualitatively new scientific re-
sults. Although high latencies can pose significant obstacles, coupled supercomputers have been

-5-

FEUP - Faculdade de Engenharia da Universidade do Porto

Category Examples Characteristics

Distributed DIS Very large problems needing

supercomputing Stellar dynamics
Ab initio chemistry

lots of CPU. memory, etc.

High Chip design Harness many otherwise idle

throughput Parameter studies resources to increase
Cryptographic problems aggregate throughput

On demand Medical instrumentation Remote resources integrated
Network-enabled solvers with local computation, often
Cloud detection for bounded amount of time

Data Sky survey Svnthesis of new information
intensive Physics data

Data assimilation
from many or large data sources

Collaborative Collaborative design Support communication or

Data exploration collaborative work between
Education multiple participants

Table 1: Five major classes of grid applications.

used successfully in cosmology [54]. high-resolution ab initio computational chemistry computa-
tions [52]. and climate modeling [45].

Challenging issues from a grid architecture perspective include the need to coschedule what are
often scarce and expensive resources, the scalability of protocols and algorithms to tens or hundreds
of thousands of nodes, latency-tolerant algorithms, and achieving and maintaining high levels of per-
formance across heterogeneous systems.

2.2 High-Throughput Computing

In high-throughput computing, the grid is used to schedule large numbers of loosely coupled or in-
dependent tasks, with the goal of putting unused processor cycles (often from idle workstations) to
work. The result may be. as in distributed supercomputing, the focusing of available resources on a
single problem, but the quasi-independent nature of the tasks involved leads to very different types of
problems and problem-solving methods. Here are some examples:

• Platform Computing Corporation reports that the microprocessor manufacturer Advanced Micro
Devices used high-throughput computing techniques to exploit over a thousand computers during
the peak design phases of their K6 and K7 microprocessors. These computers are located on
the desktops of AMD engineers at a number of AMD sites and were used for design verification
only when not in use by engineers.

• The Condor system from the University of Wisconsin is used to manage pools of hundreds
of workstations at universities and laboratories around the world [41]. These resources have
been used for studies as diverse as molecular simulations of liquid crystals, studies of ground-
penetrating radar, and the design of diesel engines.

• More loosely organized efforts have harnessed tens of thousands of computers distributed world-
wide to tackle hard cryptographic problems [40].

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

2.3 On-Demand Computing

On-demand applications use grid capabilities to meet short-term requirements for resources that can-
not be cost-effectively or conveniently located locally. These resources may be computation, soft-
ware, data repositories, specialized sensors, and so on. In contrast to distributed supercomputing
applications, these applications are often driven by cost-performance concerns rather than absolute
performance. For example:

• The NEOS [17] and NetSolve [11] network-enhanced numerical solver systems allow users to
couple remote software and resources into desktop applications, dispatching to remote servers
calculations that are computationally demanding or that require specialized software.

• A computer-enhanced MRI machine and scanning tunneling microscope (STM) developed at
the National Center for Supercomputing Applications use supercomputers to achieve realtime
image processing [57]. [58]. The result is a significant enhancement in the ability to understand
what we are seeing and. in the case of the microscope, to steer the instrument.

• A system developed at the Aerospace Corporation for processing of data from meteorological
satellites uses dynamically acquired supercomputer resources to deliver the results of a cloud
detection algorithm to remote meteorologists in quasi real time [38].

The challenging issues in on-demand applications derive primarily from the dynamic nature of
resource requirements and the potentially large populations of users and resources. These issues
include resource location, scheduling, code management, configuration, fault tolerance, security, and
payment mechanisms.

2.4 Data-Intensive Computing

In data-intensive applications, the focus is on synthesizing new information from data that is main-
tained in geographically distributed repositories, digital libraries, and databases. This synthesis pro-
cess is often computationally and communication intensive as well.

• Future high-energy physics experiments will generate terabytes of data per day. or around a
petabyte per year. The complex queries used to detect "interesting" events may need to access
large fractions of this data [43]. The scientific collaborators who will access this data are widely
distributed, and hence the data systems in which data is placed are likely to be distributed as
well.

• The Digital Sky Survey will, ultimately, make many terabytes of astronomical photographic
data available in numerous network-accessible databases. This facility enables new approaches
to astronomical research based on distributed analysis, assuming that appropriate computational
grid facilities exist.

• Modern meteorological forecasting systems make extensive use of data assimilation to incorporate
remote satellite observations. The complete process involves the movement and processing of
many gigabytes of data.

Challenging issues in data-intensive applications are the scheduling and configuration of complex,
high-volume data flows through multiple levels of hierarchy.

-7-

FEUP - Faculdade de Engenharia da Universidade do Porto

2.5 Collaborative Computing

Collaborative applications are concerned primarily with enabling and enhancing human-to-human
interactions. Such applications are often structured in terms of a virtual shared space. Many col-
laborative applications are concerned with enabling the shared use of computational resources such
as data archives and simulations: in this case, they also have characteristics of the other application
classes just described. For example:

• The BoilerMaker system developed at Argonne National Laboratory allows multiple users to
collaborate on the design of emission control systems in industrial incinerators [20]. The different
users interact with each other and with a simulation of the incinerator.

• The CAYE5D system supports remote, collaborative exploration of large geophysical data sets
and the models that generate them—for example, a coupled physical/biological model of the
Chesapeake Bay [74].

• The NICE system developed at the University of Illinois at Chicago allows children to participate
in the creation and maintenance of realistic virtual worlds, for entertainment and education [60].

Challenging aspects of collaborative applications from a grid architecture perspective are the real-
time requirements imposed by human perceptual capabilities and the rich variety of interactions that
can take place.

We conclude this section with three general observations. First, we note that even in this brief
survey we see a tremendous variety of already successful applications. This rich set has been developed
despite the significant difficulties faced by programmers developing grid applications in the absence of
a mature grid infrastructure. As grids evolve, we expect the range and sophistication of applications to
increase dramatically. Second, we observe that almost all of the applications demonstrate a tremendous
appetite for computational resources (CPU. memory, disk, etc.) that cannot be met in a timely fashion
by expected growth in single-system performance. This emphasizes the importance of grid technologies
as a means of sharing computation as well as a data access and communication medium. Third, we see
that many of the applications are interactive, or depend on tight synchronization with computational
components, and hence depend on the availability of a grid infrastructure able to provide robust
performance guarantees.

3 Grid Communities

Who will use grids? One approach to understanding computational grids is to consider the commu-
nities that they serve. Because grids are above all a mechanism for sharing resources, we ask. What
groups of people will have sufficient incentive to invest in the infrastructure required to enable sharing,
and what resources will these communities want to share?

One perspective on these questions holds that the benefits of sharing will almost always outweigh
the costs and. hence, that we will see grids that link large communities with few common interests,
within which resource sharing will extend to individual PCs and workstations. If we compare a
computational grid to an electric power grid, then in this view, the grid is quasi-universal, and every
user has the potential to act as a cogenerator. Skeptics respond that the technical and political costs
of sharing resources will rarely outweigh the benefits, especially when coupling must cross institutional
boundaries. Hence, they argue that resources will be shared only when there is considerable incentive
to do so: because the resource is expensive, or scarce, or because sharing enables human interactions
that are otherwise difficult to achieve. In this view, grids will be specialized, designed to support
specific user communities with specific goals.

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Rather than take a particular position on how grids will evolve, we propose what we see as four
plausible scenarios, each serving a different community. Future grids will probably include elements
of all four.

3.1 Government

The first community that we consider comprises the relatively small number—thousands or perhaps
tens of thousands—of officials, planners, and scientists concerned with problems traditionally assigned
to national government, such as disaster response, national defense, and long-term research and plan-
ning. There can be significant advantage to applying the collective power of the nation's fastest
computers, data archives, and intellect to the solution of these problems. Hence, we envision a grid
that uses the fastest networks to couple relatively small numbers of high-end resources across the
nation—perhaps tens of teraFLOP computers, petabytes of storage, hundreds of sites, thousands of
smaller systems—for two principal purposes:

1. To provide a "strategic computing reserve." allowing substantial computing resources to be
applied to large problems in times of crisis, such as to plan responses to a major environmental
disaster, earthquake, or terrorist attack

2. To act as a "national collaboratory." supporting collaborative investigations of complex scientific
and engineering problems, such as global change, space station design, and environmental cleanup

An important secondary benefit of this high-end national supercomputing grid is to support re-
source trading between the various operators of high-end resources, hence increasing the efficiency
with which those resources are used.

This national grid is distinguished by its need to integrate diverse high-end (and hence complex)
resources, the strategic importance of its overall mission, and the diversity of competing interests that
must be balanced when allocating resources.

3.2 A Health Maintenance Organization

In our second example, the community supported by the grid comprises administrators and medi-
cal personnel located at a small number of hospitals within a metropolitan area. The resources to be
shared are a small number of high-end computers, hundreds of workstations, administrative databases,
medical image archives, and specialized instruments such as MRI machines. CAT scanners, and car-
dioangiography devices. The coupling of these resources into an integrated grid enables a wide range
of new. computationally enhanced applications: desktop tools that use centralized supercomputer re-
sources to run computer-aided diagnosis procedures on mammograms or to search centralized medical
image archives for similar cases: life-critical applications such as telerobotic surgery and remote car-
diac monitoring and analysis: auditing software that uses the many workstations across the hospital
to run fraud detection algorithms on financial records: and research software that uses supercom-
puters and idle workstations for epidemiological research. Each of these applications exists today in
research laboratories, but has rarely been deployed in ordinary hospitals because of the high cost of
computation.

This private grid is distinguished by its relatively small scale, central management, and common
purpose on the one hand, and on the other hand by the complexity inherent in using common in-
frastructure for both life-critical applications and less reliability-sensitive purposes and by the need
to integrate low-cost commodity technologies. We can expect grids with similar characteristics to be
useful in manv institutions.

•9-

FEUP - Faculdade de Engenharia da Universidade do Porto

3.3 A Materials Science Collaboratory

The community in our third example is a group of scientists who operate and use a variety of instru-
ments, such as electron microscopes, particle accelerators, and X-ray sources, for the characterization
of materials. This community is fluid and highly distributed, comprising many hundreds of university
researchers and students from around the world, in addition to the operators of the various instru-
ments (tens of instruments, at perhaps ten centers). The resources that are being shared include the
instruments themselves, data archives containing the collective knowledge of this community, sophis-
ticated analysis software developed by different groups, and various supercomputers used for analysis.
Applications enabled by this grid include remote operation of instruments, collaborative analysis, and
supercomputer-based online analysis.

This virtual grid is characterized by a strong unifying focus and relatively narrow goals on the one
hand, and on the other hand by dynamic membership, a lack of central control, and a frequent need
to coexist with other uses of the same resources. We can imagine similar grids arising to meet the
needs of a variety of multi-institutional research groups and multicompany virtual teams created to
pursue long- or short-term goals.

3.4 Computational Market Economy

The fourth community that we consider comprises the participants in a broad-based market economy
for computational services. This is a potentially enormous community with no connections beyond
the usual market-oriented relationships. We can expect participants to include consumers, with their
diverse needs and interests: providers of specialized services, such as financial modeling, graphics
rendering, and interactive gaming: providers of compute resources: network providers, who contract
to provide certain levels of network service; and various other entities such as banks and licensing
organizations.

This public grid is in some respects the most intriguing of the four scenarios considered here, but
is also the least concrete. One area of uncertainty concerns the extent to which the average consumer
will also act as a producer of computational resources. The answer to this question seems to depend on
two issues. Will applications emerge that can exploit loosely coupled computational resources? And.
will owners of resources be motivated to contribute resources? To date, large-scale activity in this
area has been limited to fairly esoteric computations—such as searching for prime numbers, breaking
cryptographic codes [40]. or detecting extraterrestrial communications [64]—with the benefit to the
individuals being the fun of participating and the potential momentary fame if their computer solves
the problem in question.

We conclude this section by noting that, in our view, each of these scenarios seems quite feasible:
indeed, substantial prototypes have been created for each of the grids that we describe. Hence, we
expect to see not just one single computational grid, but rather many grids, each serving a different
community with its own requirements and objectives. Just which grids will evolve depends critically on
three issues: the evolving economics of computing and networking, and the services that these physical
infrastructure elements are used to provide: the institutional, regulatory, and political frameworks
within which grids may develop: and. above all. the emergence of applications able to motivate users
to invest in and use grid technologies.

4 Using Grids

How will grids be used? In metacomputing experiments conducted to date, users have been "heroic"
programmers, willing to spend large amounts of time programming complex systems at a low level.

10-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Class
End users

Application
developers
Tool
developers
Grid
developers

Purpose
Solve
problems
Develop
applications
Develop tools,
programming models
Provide basic
grid services

Makes use of
Applications

Programming
models, tools
Grid
services
Local system
services

Concerns
Transparency,
performance
Ease of use,
performance
Adaptivity, exposure of
performance, security
Local simplicity,
connectivitv. securitv

System
administrators

Manage
grid resources

Management
tools

Balancing local
and global concerns

Table 2: Classes of grid users.

The resulting applications have provided compelling demonstrations of what might be. but in most
cases are too expensive, unreliable, insecure, and fragile to be considered suitable for general use.

For grids to become truly useful, we need to take a significant step forward in grid programming,
moving from the equivalent of assembly language to high-level languages, from one-off libraries to
application toolkits, and from hand-crafted codes to shrink-wrapped applications. These goals are
familiar to us from conventional programming, but in a grid environment we are faced with the addi-
tional difficulties associated with wide area operation—in particular, the need for grid applications to
adapt to changes in resource properties in order to meet performance requirements. As in conventional
computing, an important step toward the realization of these goals is the development of standards
for applications, programming models, tools, and services, so that a division of labor can be achieved
between the users and developers of different types of components.

We structure our discussion of grid tools and programming in terms of the classification illustrated
in Table 2. At the lowest level, we have grid developers—the designers and implementors of what we
might call the "Grid Protocol," by analogy with the Internet Protocol that provides the lowest-level
services in the Internet—who provide the basic services required to construct a grid. Above this, we
have tool developers, who use grid services to construct programming models and associated tools,
layering higher-level services and abstractions on top of the more fundamental services provided by
the grid architecture. Application developers, in turn, build on these programming models, tools, and
services to construct grid-enabled applications for end users who. ideally, can use these applications
without being concerned with the fact that they are operating in a grid environment. A fifth class
of users, system administrators, is responsible for managing grid components. We now examine this
model in more detail.

4.1 Grid Developers

A very small group of grid developers are responsible for implementing the basic services referred to
above. We discuss the concerns encountered at this level in Section 5.

4.2 Tool Developers

Our second group of users are the developers of the tools, compilers, libraries, and so on that implement
the programming models and services used by application developers. Today's small population of grid
tool developers (e.g.. the developers of Condor [41]. Nimrod [1]. NEOS [17]. Net Solve [11]. Horus [68].

- 11 -

FEUP - Faculdade de Engenharia da Universidade do Porto

grid-enabled implementations of the Message Passing Interface (MPI) [27]. and CAVERN [39]) must
build their tools on a very narrow foundation, comprising little more than the Internet Protocol. We
envision that future grid systems will provide a richer set of basic services, hence making it possible
to build more sophisticated and robust tools. We discuss the nature and implementation of those
basic services in Section 5: briefly, they comprise versions of those services that have proven effective
on today's end systems and clusters, such as authentication, process management, data access, and
communication, plus new services that address specific concerns of the grid environment, such as
resource location, information, fault detection, security, and electronic payment.

Tool developers must use these basic services to provide efficient implementations of the program-
ming models that will be used by application developers. In constructing these translations, the tool
developer must be concerned not only with translating the existing model to the grid environment, but
also with revealing to the programmer those aspects of the grid environment that impact performance.
For example, a grid-enabled MPI [27] can seek to adapt the MPI model for grid execution by incorpo-
rating specialized techniques for point-to-point and collective communication in highly heterogeneous
environments: implementations of collective operations might use multicast protocols and adapt a
combining tree structure in response to changing network loads. It should probably also extend the
MPI model to provide programmers with access to resource location services, information about grid
topology, and group communication protocols.

4.3 Application Developers

Our third class of users comprises those who construct grid-enabled applications and components.
Today, these programmers write applications in what is, in effect, an assembly language: explicit
calls to the Internet Protocol's User Datagram Protocol (UDP) or Transmission Control Protocol
(TCP), explicit or no management of failure, hard-coded configuration decisions for specific computing
systems, and so on. We are far removed from the portable, efficient, high-level languages that are
used to develop sequential programs, and the advanced services that programmers can rely upon when
using these languages, such as dynamic memory management and high-level I/O libraries.

Future grids will need to address the needs of application developers in two ways. They must
provide programming models (supported by languages, libraries, and tools) that are appropriate for
grid environments and a range of services (for security, fault detection, resource management, data
access, communication, etc.) that programmers can call upon when developing applications.

The purpose of both programming models and services is to simplify thinking about and implement-
ing complex algorithmic structures, by providing a set of abstractions that hide details unrelated to the
application, while exposing design decisions that have a significant impact on program performance
or correctness. In sequential programming, commonly used programming models provide us with ab-
stractions such as subroutines and scoping: in parallel programming, we have threads and condition
variables (in shared-memory parallelism), message passing, distributed arrays, and single-assignment
variables. Associated services ensure that resources are allocated to processes in a reasonable fashion,
provide convenient abstractions for tertiary storage, and so forth.

There is no consensus on what programming model is appropriate for a grid environment, although
it seems clear that many models will be used. Table 3 summarizes some of the models that have been
proposed: new models will emerge as our understanding of grid programming evolves.

As Table 3 makes clear, one approach to grid programming is to adapt models that have already
proved successful in sequential or parallel environments. For example, a grid-enabled distributed
shared-memory (DSM) system would support a shared-memory programming model in a grid envi-
ronment, allowing programmers to specify parallelism in terms of threads and shared-memory oper-
ations. Similarly, a grid-enabled MPI would extend the popular message-passing model [27]. and a

- 12-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Model
Datagram/stream
communication
Shared memory,
multithreading
Data parallelism

Examples
UDP. TCP,
Multicast
POSIX Threads
DSM
HPF. HPC++

Message passing MPI. PVM
Object-oriented CORBA, DCOM.

Java RMI
Remote procedure DCE. ONC
call
High throughput Condor. LSF,

Nimrod
Group ordered Isis, Totem

Agents Aglets,
Telescript

Pros
Low overhead

High level

Automatic
parallelization
High performance
Support for
large-system design
Simplicity

Ease of use

Robustness

Flexibilitv

Cons
Low level

Scalability

Restricted
applicability
Low level
Performance

Restricted
applicability
Restricted
applicability
Performance.
scalability
Performance.
robustness

Table 3: Potential grid programming models and their advantages and disadvantages.

grid-enabled file system would permit remote files to be accessed via the standard UNIX application
programming interface (API) [66]. These approaches have the advantage of potentially allowing ex-
isting applications to be reused unchanged, but can introduce significant performance problems if the
models in question do not adapt well to high-latency, dynamic, heterogeneous grid environments.

Another approach is to build on technologies that have proven effective in distributed computing,
such as Remote Procedure Call (RPC) or related object-based techniques such as the Common Ob-
ject Request Broker Architecture (CORBA). These technologies have significant software engineering
advantages, because their encapsulation properties facilitate the modular construction of programs
and the reuse of existing components. However, it remains to be seen whether these models can sup-
port performance-focused, complex applications such as teleimmersion or the construction of dynamic
computations that span hundreds or thousands of processors.

The grid environment can also motivate new programming models and services. For example,
high-throughput computing systems, as exemplified by Condor [41] and Nimrod [1]. support problem-
solving methods such as parameter studies in which complex problems are partitioned into many
independent tasks. Group-ordered communication systems represent another model that is important
in dynamic, unpredictable grid environments; they provide services for managing groups of processes
and for delivering messages reliably to group members. Agent-based programming models represent
another approach apparently well suited to grid environments: here, programs are constructed as
independent entities that roam the network searching for data or performing other tasks on behalf of
a user.

A wide range of new services can be expected to arise in grid environments to support the devel-
opment of more complex grid applications. In addition to grid analogs of conventional services such as
file systems, we will see new services for resource discovery, resource brokering, electronic payments,
licensing, fault tolerance, specification of use conditions, configuration, adaptation, and distributed
system management, to name just a few.

FEUP - Faculdade de Engenharia da Universidade do Porto

4.4 End Users

Most grid users, like most users of computers or networks today, will not write programs. Instead, they
will use grid-enabled applications that make use of grid resources and services. These applications
may be chemistry packages or environmental models that use grid resources for computing or data:
problem-solving packages that help set up parameter study experiments [1]; mathematical packages
augmented with calls to network-enabled solvers [17], [11]: or collaborative engineering packages that
allow geographically separated users to cooperate on the design of complex systems.

End users typically place stringent requirements on their tools, in terms of reliability, predictability,
confidentiality, and usability. The construction of applications that can meet these requirements in
complex grid environments represents a major research and engineering challenge.

4.5 System Administrators

The final group of users that we consider are the system administrators who must manage the infras-
tructure on which computational grids operate. This task is complicated by the high degree of sharing
that grids are designed to make possible. The user communities and resources associated with a par-
ticular grid will frequently span multiple administrative domains, and new services will arise—such
as accounting and resource brokering—that require distributed management. Furthermore, individ-
ual resources may participate in several different grids, each with its own particular user community,
access policies, and so on. For a grid to be effective, each participating resource must be administered
so as to strike an appropriate balance between local policy requirements and the needs of the larger
grid community. This problem has a significant political dimension, but new technical solutions are
also required.

The Internet experience suggests that two keys to scalability when administering large distributed
systems are to decentralize administration and to automate trans-site issues. For example, names and
routes are administered locally, while essential trans-site services such as route discovery and name
resolution are automated. Grids will require a new generation of tools for automatically monitoring
and managing many tasks that are currently handled manually.

New administration issues that arise in grids include establishing, monitoring, and enforcing local
policies in situations where the set of users may be large and dynamic; negotiating policy with other
sites and users: accounting and payment mechanisms: and the establishment and management of mar-
kets and other resource-trading mechanisms. There are interesting parallels between these problems
and management issues that arise in the electric power and banking industries 114. [31]. [28].

5 Grid Architecture

What is involved in building a grid? To address this question, we adopt a system architect's perspec-
tive and examine the organization of the software infrastructure required to support the grid users,
applications, and services discussed in the preceding sections.

As noted above, computational grids will be created to serve different communities with widely
varying characteristics and requirements. Hence, it seems unlikely that we will see a single grid
architecture. However, we do believe that we can identify basic services that most grids will provide,
with different grids adopting different approaches to the realization of these services.

One major driver for the techniques used to implement grid services is scale. Computational
infrastructure, like other infrastructures, is fractal, or self-similar at different scales. We have networks
between countries, organizations, clusters, and computers: between components of a computer: and
even within a single component. However, at different scales, we often operate in different physical.

-14-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Comp. model I/O model Resource manag. Security
Endsystem:
Multithreading. Local I/O. Process creation OS kernel.
automatic disk-striping OS signal delivery hardware
parallelization. - OS scheduling
Cluster (increased scale, reduced integration):
Synchronous Parallel I/O Parallel process Shared
communication. (e.g.. MPI-IO). creation, gang security
distributed shared file systems scheduling, OS-level databases
memory signal propagation
Intranet (heterogene ity. separate administration, lack of global knowledge):
Client/server. Distributed file Resource discovery, Network
looselv synchronous: systems signal distribution security
pipelines, coupling (DFS. HPSS). networks. (Kerberos)
manager/worker databases high throughput
Internet (lack of centralized control, geographical distribution, intl. issues):
Collaborative Remote file access. Brokers, Trust dele-
systems, remote digital libraries. trading. gation, public
control, data data warehouses mobile code key.
mining negotiation sandboxes

Table 4: Computer systems operating at different scales.

economic, and political regimes. For example, the access control solutions used for a laptop computer's
system bus are probably not appropriate for a trans-Pacific cable.

In this section, we adopt scale as the major dimension for comparison. We consider four types
of systems, of increasing scale and complexity, asking two questions for each: What new concerns
does this increase in scale introduce? And how do these new concerns influence how we provide basic
services? These system types are as follows (see also Table 4):

1. The ene! system provides the best model we have for what it means to compute, because it is
here that most research and development efforts have focused in the past four decades.

2. The cluster introduces new issues of parallelism and distributed management, albeit of homoge-
neous systems.

3. The intranet introduces the additional issues of heterogeneity and geographical distribution.

4. The internet introduces issues associated with a lack of centralized control.

An important secondary driver for architectural solutions is the performance requirements of the
grid. Stringent performance requirements amplify the effect of scale because they make it harder
to hide heterogeneity. For example, if performance is not a big concern, it is straightforward to
extend UNIX file I/O to support access to remote files, perhaps via a HyperText Transport Protocol
(HTTP) gateway [66]. However, if performance is critical, remote access may require quite different
mechanisms—such as parallel transfers over a striped network from a remote parallel file system to a
local parallel computer—that are not easily expressed in terms of UNIX file I/O semantics. Hence, a

- 15-

FEUP - Faculdade de Engenharia da Universidade do Porto

high-performance wide area grid may need to adopt quite different solutions to data access problems.
In the following, we assume that we are dealing with high-performance systems; systems with lower
performance requirements are generally simpler.

5.1 Basic Services

We start our discussion of architecture by reviewing the basic services provided on conventional com-
puters. We do so because we believe that, in the absence of strong evidence to the contrary, services
that have been developed and proven effective in several decades of conventional computing will also
be desirable in computational grids. Grid environments also require additional services, but we claim
that, to a significant extent, grid development will be concerned with extending familiar capabilities
to the more complex wide area environment.

Our purpose in this subsection is not to provide a detailed exposition of well-known ideas but
rather to establish a vocabulary for subsequent discussion. We assume that we are discussing a
generic modern computing system, and hence refrain from prefixing each statement with "in general."
"typically." and the like. Individual systems will, of course, differ from the generic systems described
here, sometimes in interesting and important ways.

The first step in a computation that involves shared resources is an authentication process, designed
to establish the identity of the user. A subsequent authorization process establishes the right of the
user to create entities called processes. A process comprises one or more threads of control, created
for either concurrency or parallelism, and executing within a shared address space. A process can
also communicate with other processes via a variety of abstractions, including shared memory (with
semaphores or locks), pipes, and protocols such as TCP/IP.

A user (or process acting on behalf of a user) can control the activities in another process—
for example, to suspend, resume, or terminate its execution. This control is achieved by means of
asynchronously delivered signals.

A process acts on behalf of its creator to acquire resources, by executing instructions, occupying
memory, reading and writing disks, sending and receiving messages, and so on. The ability of a
process to acquire resources is limited by underlying authorization mechanisms, which implement a
system's resource allocation policy, taking into account the user's identity, prior resource consumption,
and/or other criteria. Scheduling mechanisms in the underlying system deal with competing demands
for resources and may also (for example, in realtime systems) support user requests for performance
guarantees.

Underlying accounting mechanisms keep track of resource allocations and consumption, and pay-
ment mechanisms may be provided to translate resource consumption into some common currency.
The underlying system will also provide protection mechanisms to ensure that one user's computation
does not interfere with another's.

Other services provide abstractions for secondary storage. Of these, virtual memory is implicit,
extending the shared address space abstraction already noted: file systems and databases are more
explicit representations of secondary storage.

5.2 End Systems

Individual end systems—computers, storage systems, sensors, and other devices—are characterized by
relatively small scale and a high degree of homogeneity and integration. There are typically just a few
tens of components (processors, disks, etc.). these components are mostly of the same type, and the
components and the software that controls them have been co-designed to simplify management and
use and to maximize performance. (Specialized devices such as scientific instruments may be more

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

significantly complex, with potentially thousands of internal components, of which hundreds may be
visible externally.)

Such end systems represent the simplest, and most intensively studied, environment in which to
provide the services listed above. The principal challenges facing developers of future systems of this
type relate to changing computer architectures (in particular, parallel architectures) and the need to
integrate end systems more fully into clusters, intranets, and internets.

State of the Art

The software architectures used in conventional end systems are well known [61]. Basic services
are provided by a privileged operating system, which has absolute control over the resources of the
computer. This operating system handles authentication and mediates user process requests to acquire
resources, communicate with other processes, access files, and so on. The integrated nature of the
hardware and operating system allows high-performance implementations of important functions such
as virtual memory and I/O.

Programmers develop applications for these end systems by using a variety of high-level languages
and tools. A high degree of integration between processor architecture, memory system, and compiler
means that high performance can often be achieved with relatively little programmer effort.

Future Directions

A significant deficiency of most end-system architectures is that they lack features necessary for
integration into larger clusters, intranets, and internets. Much current research and development is
concerned with evolving system end architectures in directions relevant to future computational grids.
To list just three: Operating systems are evolving to support operation in clustered environments,
in which services are distributed over multiple networked computers, rather than replicated on even-
processor [3]. [65]. A second important trend is toward a greater integration of end systems (computers,
disks, etc.) with networks, with the goal of reducing the overheads incurred at network interfaces
and hence increasing communication rates [22]. [35]. Finally, support for mobile code is starting to
appear, in the form of authentication schemes, secure execution environments for downloaded code
("sandboxes"), and so on [32]. [72]. [71]. [44].

The net effect of these various developments seems likely to be to reduce the currently sharp
boundaries between end system, cluster, and intranet/internet, with the result that individual end
systems will more fully embrace remote computation, as producers and/or consumers.

5.3 Clusters

The second class of systems that we consider is the cluster, or network of workstations: a collection
of computers connected by a high-speed local area network and designed to be used as an integrated
computing or data processing resource. A cluster, like an individual end system, is a homogeneous
entity—its constituent systems differ primarily in configuration, not basic architecture—and is con-
trolled by a single administrative entity who has complete control over each end system. The two
principal complicating factors that the cluster introduces are as follows:

1. Increased physical scale. A cluster may comprise several hundred or thousand processors, with
the result that alternative algorithms are needed for certain resource management and control
functions.

17-

FEUP - Faculdade de Engenharia do Universidade do Porto

2. Reduced integration: A desire to construct clusters from commodity parts means that clusters
are often less integrated than end systems. One implication of this is reduced performance for
certain functions (e.g.. communication).

State of the Art

The increased scale and reduced integration of the cluster environment make the implementation of
certain services more difficult and also introduce a need for new services not required in a single
end system. The result tends to be either significantly reduced performance (and hence range of
applications) or software architectures that modify and/or extend end-system operating systems in
significant ways.

We use the problem of high-performance parallel execution to illustrate the types of issues that
can arise when we seek to provide familiar end-system services in a cluster environment. In a single
(multiprocessor) end system, high-performance parallel execution is typically achieved either by using
specialized communication libraries such as MPI or by creating multiple threads that communicate
by reading and writing a shared address space.

Both message-passing and shared-memory programming models can be implemented in a cluster.
Message passing is straightforward to implement, since the commodity systems from which clusters
are constructed typically support at least TCP/IP as a communication protocol. Shared memory
requires additional effort: in an end system, hardware mechanisms ensure a uniform address space
for all threads, but in a cluster, we are dealing with multiple address spaces. One approach to this
problem is to implement a logical shared memory by providing software mechanisms for translating
between local and global addresses, ensuring coherency between different versions of data, and so
forth. A variety of such distributed shared-memory systems exist, varying according to the level at
which sharing is permitted [76]. [24]. [53].

In low-performance environments, the cluster developer's job is done at this point; message-passing
and DSM systems can be run as user-level programs that use conventional communication protocols
and mechanisms (e.g.. TCP/IP) for interprocessor communication. However, if performance is im-
portant, considerable additional development effort may be required. Conventional network proto-
cols are orders of magnitude slower than intra-end-system communication operations. Low-latency,
high-bandwidth inter-end-system communication can require modifications to the protocols used for
communication, the operating system's treatment of network interfaces, or even the network interface
hardware [70]. [56].

The cluster developer who is concerned with parallel performance must also address the problem
of coscheduling. There is little point in communicating extremely rapidly to a remote process that
must be scheduled before it can respond. Coscheduling refers to techniques that seek to schedule
simultaneously the processes constituting a computation on different processors [23]. [63]. In certain
highly integrated parallel computers, coscheduling is achieved by using a batch scheduler: processors
are space shared, so that only one computation uses a processor at a time. Alternatively, the schedulers
on the different systems can communicate, or the application itself can guide the local scheduling
process to increase the likelihood that processes will be coscheduled [3]. [14].

To summarize the points illustrated by this example: in clusters, the implementation of services
taken for granted in end systems can require new approaches to the implementation of existing services
(e.g.. interprocess communication) and the development of new services (e.g.. DSM and coscheduling).
The complexity of the new approaches and services, as well as the number of modifications required
to the commodity technologies from which clusters are constructed, tends to increase proportionally
with performance requirements.

We can paint a similar picture in other areas, such as process creation, process control, and I/O.

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Experience shows that familiar services can be extended to the cluster environment without too much
difficulty, especially if performance is not critical; the more sophisticated cluster systems provide
transparent mechanisms for allocating resources, creating processes, controlling processes, accessing
files, and so forth, that work regardless of a program's location within the cluster. However, when
performance is critical, new implementation techniques, low-level services, and high-level interfaces
can be required [65]. [25].

Future Directions

Cluster architectures are evolving in response to three pressures:

1. Performance requirements motivate increased integration and hence operating system and hard-
ware modifications (for example, to support fast communications).

2. Changed operational parameters introduce a need for new operating system and user-level ser-
vices, such as coscheduling.

3. Economic pressures encourage a continued focus on commodity technologies, at the expense of
decreased integration and hence performance and services.

It seems likely that, in the medium term, software architectures for clusters will converge with
those for end systems, as end-system architectures address issues of network operation and scale.

5.4 Intranets

The third class of systems that we consider is the intranet, a grid comprising a potentially large
number of resources that nevertheless belong to a single organization. Like a cluster, an intranet can
assume centralized administrative control and hence a high degree of coordination among resources.
The three principal complicating factors that an intranet introduces are as follows:

1. Heterogeneity: The end systems and networks used in an intranet are almost certainly of different
types and capabilities. We cannot assume a single system image across all end systems.

2. Separate administration: Individual systems will be separately administered: this feature intro-
duces additional heterogeneity and the need to negotiate potentially conflicting policies.

3. Lack of global knowledge: A consequence of the first two factors, and the increased number of
end systems, is that it is not possible, in general, for any one person or computation to have
accurate global knowledge of system structure or state.

State of the Art

The software technologies employed in intranets focus primarily on the problems of physical and
administrative heterogeneity. The result is typically a simpler, less tightly integrated set of services
than in a typical cluster. Commonly, the services that are provided are concerned primarily with the
sharing of data (e.g.. distributed file systems, databases. Web services) or with providing access to
specialized services, rather than with supporting the coordinated use of multiple resources. Access to
nonlocal resources often requires the use of simple, high-level interfaces designed for "arm's-length"
operation in environments in which every operation may involve authentication, format conversions,
error checking, and accounting. Nevertheless, centralized administrative control does mean that a
certain degree of uniformity of mechanism and interface can be achieved: for example, all machines

19-

FEUP - Faculdade de Engenharia da Universidade do Porto

may be required to run a specific distributed file system or batch scheduler, or may be placed behind
a firewall, hence simplifying security solutions.

Software architectures commonly used in intranets include the Distributed Computing Environ-
ment (DCE). DCOM. and CORBA. In these systems, programs typically do not allocate resources
and create processes explicitly, but rather connect to established "services" that encapsulate hardware
resources or provide defined computational services. Interactions occur via remote procedure call [33]
or remote method invocation [55]. [36]. models designed for situations in which the parties involved
have little knowledge of each other. Communications occur via standardized protocols (typically lay-
ered on TCP/IP) that are designed for portability rather than high performance. In larger intranets,
particularly those used for mission-critical applications, reliable group communication protocols such
as those implemented by ISIS [7] and Totem [46] can be used to deal with failure by ordering the
occurrence of events within the system.

The limited centralized control provided by a parent organization can allow the deployment of
distributed queuing systems such as Load Sharing Facility (LSF). Codine, or Condor, hence providing
uniform access to compute resources. Such systems provide some support for remote management of
computation, for example, by distributing a limited range of signals to processes through local servers
and a logical signal distribution network. However, issues of security, payment mechanisms, and policy
often prevent these solutions from scaling to large intranets.

In a similar fashion, uniform access to data resources can be provided by means of wide area file
system technology (such as DFS). distributed database technology, or remote database access (such as
SQL servers). High-performance, parallel access to data resources can be provided by more specialized
systems such as the High Performance Storage System [73]. In these cases, the interfaces presented
to the application would be the same as those provided in the cluster environment.

The greater heterogeneity, scale, and distribution of the intranet environment also introduce the
need for services that are not needed in clusters. For example, resource discovery mechanisms may be
needed to support the discovery of the name, location, and other characteristics of resources currently
available on the network. A reduced level of trust and greater exposure to external threats may
motivate the use of more sophisticated security technologies. Here, we can once again exploit the
limited centralized control that a parent organization can offer. Solutions such as Kerberos [51] can be
mandated and integrated into the computational mode], providing a unified authentication structure
throughout the intranet.

Future Directions

Existing intranet technologies do a reasonable job of projecting a subset of familiar programming
models and services (procedure calls, file systems, etc.) into an environment of greater complexity
and physical scale, but are inadequate for performance-driven applications. We expect future de-
velopments to overcome these difficulties by extending lighter-weight interaction models originally
developed within clusters into the more complex intranet environment, and by developing specialized
performance-oriented interfaces to various services.

5.5 Internets

The final class of systems that we consider is also the most challenging on which to perform network
computing—internetworked systems that span multiple organizations. Like intranets, internets tend
to be large and heterogeneous. The three principal additional complicating factors that an internet
introduces are as follows:

-20-

VECPAR '2000 - 4th Internationa! Meeting on Vector and Parallel Processing

1. Lack of centralized control: There is no central authority to enforce operational policies or to
ensure resource quality, and so we see wide variation in both policy and quality.

2. Geographical distribution: Internets typically link resources that are geographically widely dis-
tributed. This distribution leads to network performance characteristics significantly different
from those in local area or metropolitan area networks of clusters and intranets. Not only does
latency scale linearly with distance, but bisection bandwidth arguments [18]. [26] suggest that
accessible bandwidth tends to decline linearly with distance, as a result of increased competition
for long-haul links.

3. International issues: If a grid extends across international borders, export controls may constrain
the technologies that can be used for security, and so on.

State of the Art

The internet environment's scale and lack of central control have so far prevented the successful
widespread deployment of grid services. Approaches that are effective in intranets often break down
because of the increased scale and lack of centralized management. The set of assumptions that one
user or resource can make about another is reduced yet further, a situation that can lead to a need
for implementation techniques based on discovery and negotiation.

We use two examples to show how the internet environment can require new approaches. We first
consider security. In an intranet, it can be reasonable to assume that every user has a preestablished
trust relationship with every resource that he wishes to access. In the more open internet environment,
this assumption becomes intractable because of the sheer number of potential process-to-resource
relationships. This problem is accentuated by the dynamic and transient nature of computation, which
makes any explicit representation of these relationships infeasible. Free-flowing interaction between
compulations and resources requires more dynamic approaches to authentication and access control.
One potential solution is to introduce the notion of delegation of trust into security relationships: that
is. we introduce mechanisms that allow an organization A to trust a user U because user I" is trusted
by a second organization B. with which A has a formal relationship. However, the development of
such mechanisms remains a research problem.

As a second example, we consider the problem of coscheduling. In an intranet, it can be reasonable
to assume that all resources run a single scheduler, whether a commercial system such as LSF or a
research system such as Condor. Hence, it may be feasible to provide coscheduling facilities in support
of applications that need to run on multiple resources at once. In an internet, we cannot rely on the
existence of a common scheduling infrastructure. In this environment, coscheduling requires that a
grid application (or scheduling service acting for an application) obtain knowledge of the scheduling
policies that apply on different resources and influence the schedule either directly through an external
scheduling API or indirectly via some other means [16].

Future Directions

Future development of grid technologies for internet environments will involve the development of
more sophisticated grid services and the gradual evolution of the services provided at end systems
in support of those services. There is little consensus on the shape of the grid architectures that
will emerge as a result of this process, but both commercial technologies and research projects point
to interesting potential directions. Three of these directions—commodity technologies. Legion, and
Globus—are explored in detail in later chapters. We note their key characteristics here but avoid
discussion of their relative merits. There is as yet too little experience in their use for such discussion
to be meaningful.

2\ -

FEUP - Faculdade de Engenharia da Universidade do Porto

The commodity approach to grid architecture adopts as the basis for grid development the vast
range of commodity technologies that are emerging at present, driven by the success of the Internet
and Web and by the demands of electronic information delivery and commerce. These technologies
are being used to construct three-tier architectures, in which middle-tier application servers mediate
between sophisticated back-end services and potentially simple front ends. Grid applications are
supported in this environment by means of specialized high-performance back-end and application
servers.

The Legion approach to grid architecture seeks to use object-oriented design techniques to simplify
the definition, deployment, application, and long-term evolution of grid components. Hence, the Legion
architecture defines a complete object model that includes abstractions of compute resources called
host objects, abstractions of storage systems called data vault objects, and a variety of other object
classes. Users can use inheritance and other object-oriented techniques to specialize the behavior of
these objects to their own particular needs, as well as develop new objects.

The Globus approach to grid architecture is based on two assumptions:

1. Grid architectures should provide basic services, but not prescribe particular programming mod-
els or higher-level architectures.

2. Grid applications require services beyond those provided by today's commodity technologies.

Hence, the focus is on defining a "toolkit" of low-level services for security, communication, resource
location, resource allocation, process management, and data access. These services are then used to
implement higher-level services, tools, and programming models.

In addition, hybrids of these different architectural approaches are possible and will almost certainly
be addressed; for example, a commodity three-tier system might use Globus services for its back end.

A wide range of other projects are exploring technologies of potential relevance to computational
grids, for example. WebOS [67]. Charlotte [6], UFO [2]. ATLAS [5]. Javelin [15]. Popcorn [10]. and
Globe [69].

6 Research Challenges

What problems must be solved to enable grid development? In preceding sections, we outlined what
we expect grids to look like and how we expect them to be used. In doing so. we tried to be as
concrete as possible, with the goal of providing at least a plausible view of the future. However, there
are certainly many challenges to be overcome before grids can be used as easily and flexibly as we have
described. In this section, we summarize the nature of these challenges, most of which are discussed
in much greater detail in the chapters that follow.

6.1 The Nature of Applications

Early metacomputing experiments provide useful clues regarding the nature of the applications that
will motivate and drive early grid development. However, history also tells us that dramatic changes in
capabilities such as those discussed here are likely to lead to radically new ways of using computers—
ways as yet unimagined. Research is required to explore the bounds of what is possible, both within
those scientific and engineering domains in which metacomputing has traditionally been applied, and
in other areas such as business, art. and entertainment.

■22-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

6.2 Programming Models and Tools

As noted in Section 4. grid environments will require a rethinking of existing programming models
and. most likely, new thinking about novel models more suitable for the specific characteristics of
grid applications and environments. Within individual applications, new techniques are required
for expressing advanced algorithms, for mapping those algorithms onto complex grid architectures,
for translating user performance requirements into system resource requirements, and for adapting
to changes in underlying system structure and state. Increased application and system complexity
increases the importance of code reuse, and so techniques for the construction and composition of
grid-enabled software components will be important. Another significant challenge is to provide tools
that allow programmers to understand and explain program behavior and performance.

6.3 System Architecture

The software systems that support grid applications must satisfy a variety of potentially conflicting
requirements. A need for broad deployment implies that these systems must be simple and place
minimal demands on local sites. At the same time, the need to achieve a wide variety of complex,
performance-sensitive applications implies that these systems must provide a range of potentially
sophisticated services. Other complicating factors include the need for scalability and evolution to
future systems and services. It seems likely that new approaches to software architecture will be
needed to meet these requirements—approaches that do not appear to be satisfied by existing Internet,
distributed computing, or parallel computing technologies.

6.4 Algorithms and Problem-Solving Methods

Grid environments differ substantially from conventional uniprocessor and parallel computing systems
in their performance, cost, reliability, and security characteristics. These new characteristics will
undoubtedly motivate the development of new classes of problem-solving methods and algorithms.
Latency-tolerant and fault-tolerant solution strategies represent one important area in which research
is required [5]. [6]. [10]. Highly concurrent and speculative execution techniques may be appropriate
in environments where many more resources are available than at present.

6.5 Resource Management

A defining feature of computational grids is that they involve sharing of networks, computers, and
other resources. This sharing introduces challenging resource management problems that are be-
yond the state of the art in a variety of areas. Many of the applications described in later chapters
need to meet stringent end-to-end performance requirements across multiple computational resources
connected by heterogeneous, shared networks. To meet these requirements, we must provide im-
proved methods for specifying application-level requirements, for translating these requirements into
computational resources and network-level quality-of-service parameters, and for arbitrating between
conflicting demands.

6.6 Security

Sharing also introduces challenging security problems. Traditional network security research has
focused primarily on two-party client-server interactions with relatively low performance requirements.
Grid applications frequently involve many more entities, impose stringent performance requirements,
and involve more complex activities such as collective operations and the downloading of code. In
larger grids, issues that arise in electronic markets become important. Users may require assurance

■23-

FEUP - Faculdade de Engenharia da Universidade do Porto

and licensing mechanisms that can provide guarantees (backed by financial obligations) that services
behave as advertised [37].

6.7 Instrumentation and Performance Analysis

The complexity of grid environments and the performance complexity of many grid applications make
techniques for collecting, analyzing, and explaining performance data of critical importance. Depend-
ing on the application and computing environment, poor performance as perceived by a user can be
due to any one or a combination of many factors: an inappropriate algorithm, poor load balancing, in-
appropriate choice of communication protocol, contention for resources, or a faulty router. Significant
advances in instrumentation, measurement, and analysis are required if we are to be able to relate
subtle performance problems in the complex environments of future grids to appropriate application
and system characteristics.

6.8 End Systems

Grids also have implications for the end systems from which they are constructed. Today's end systems
are relatively small and are connected to networks by interfaces and with operating system mechanisms
originally developed for reading and writing slow disks. Grids require that this model evolve in two
dimensions. First, by increasing demand for high-performance networking, grid systems will motivate
new approaches to operating system and network interface design in which networks are integrated
with computers and operating systems at a more fundamental level than is the case today. Second,
by developing new applications for networked computers, grids will accelerate local integration and
hence increase the size and complexity of the end systems from which they are constructed.

6.9 Network Protocols and Infrastructure

Grid applications can be expected to have significant implications for future network protocols and
hardware technologies. Mainstream developments in networking, particularly in the Internet commu-
nity, have focused on best-effort service for large numbers of relatively low-bandwidth flows. Many
of the future grid applications discussed in this book require both high bandwidths and stringent
performance assurances. Meeting these requirements will require major advances in the technologies
used to transport, switch, route, and manage network flows.

7 Summary

This chapter has provided a high-level view of the expected purpose, shape, and architecture of
future grid systems and. in the process, sketched a road map for more detailed technical discussion in
subsequent chapters. The discussion was structured in terms of six questions.

Why do ire need computational grids? We explained how grids can enhance human creativity by.
for example, increasing the aggregate and peak computational performance available to important
applications and allowing the coupling of geographically separated people and computers to support
collaborative engineering. We also discussed how such applications motivate our requirement for a
software and hardware infrastructure able to provide dependable, consistent, and pervasive access to
high-end computational capabilities.

What types of applications will grids be used for? We described five classes of grid applications:
distributed supercomputing. in which many grid resources are used to solve very large problems: high
throughput, in which grid resources are used to solve large numbers of small tasks: on demand, in
which grids are used to meet peak needs for computational resources: data intensive, in which the

-24-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

focus is on coupling distributed data resources: and collaborative, in which grids are used to connect
people.

Who will use grids? We examined the shape and concerns of four grid communities, each supporting
a different type of grid: a national grid, serving a national government: a private grid, serving a
health maintenance organization; a virtual grid, serving a scientific collaboratory; and a public grid,
supporting a market for computational services.

How will grids be used? We analyzed the requirements of five classes of users for grid tools and
services, distinguishing between the needs and concerns of end users, application developers, tool
developers, grid developers, and system managers.

What is involved in building a grid? We discussed potential approaches to grid architecture,
distinguishing between the differing concerns that arise and technologies that have been developed
within individual end systems, clusters, intranets, and internets.

What problems must be solved to enable grid development'? We provided a brief review of the
research challenges that remain to be addressed before grids can be constructed and used on a large
scale.

Further Reading

For more information on the topics covered in this chapter, see www.mkp.com/grids and also the
following references:

• A series of books published by the Corporation for National Research Initiatives [29]. [30]. [31].
[28] review and draw lessons from other large-scale infrastructures, such as the electric power
grid, telecommunications network, and banking system.

• Catlett and Smarrs original paper on metacomputing [13] provides an early vision of how high-
performance distributed computing can change the way in which scientists and engineers use
computing.

• Papers in a 1996 special issue of the International Journal of Supercomputer Applications [19]
describe the architecture and selected applications of the I-WAY metacomputing experiment.

• Papers in a 1997 special issue of the Communications of the ACM [62] describe plans for a
National Technology Grid.

• Several reports bv the National Research Council touch upon issues relevant to grids [49]. [50].
[48].

• Birman and van Renesse [8] discuss the challenges that we face in achieving reliability in grid
applications.

References

[1] D. Abramson, R. Sosic. J. Giddy, and B. Hall. Nimrod: A tool for performing parameterized simulations
using distributed workstations. In Proc. Jth IEEE Symp. on High Performance Distributed Computing.
IEEE Computer Society Press. 1995.

[2] A. D. Alexandrov. M. Ibel. K. E. Schauser. and C. J. Scheiman. Extending the operating system at the
user level: The UFO global file system. In 1997 Annual Technical Conference on UXLX and Advanced
Computing Systems (VSEX1X'97). January 1997.

' [3] T. Anderson. Glunix: A global layer Unix for NOW. http://now.cs.berkeley.edu/Glunix/glunix.html.

■25-

FEUP - Faculdade de Engenharia da Universidade do Porto

[4] R. Arpaci. A. Dusseau. A. Vahdat. L. Liu. T. Anderson, and D. Patterson. The interaction of parallel and
sequential workloads on a network of workstations. In Proc. SIGMETR1CS. 1995.

[5] J. Baldeschwieler, R. Blumofe. and E. Brewer. ATLAS: An infrastructure for global computing. In Proc.
Seventh ACM SIGOPS European Workshop on System Support for Worldwide Applications. 1996.

[6] A. Baratloo. M. Karaul. Z. Kedem. and P. Wyckoff. Charlotte: Metacomputing on the Web. In Proc. 9th
Conference on Parallel and Distributed Computing Systems. 1996.

[7] K. P. Birman and R. van Rennesse. Reliable Distributed Computing Using the Isis Toolkit. IEEE Computer
Society Press. 1994.

[8] Kenneth P. Birman and Robbert van Renesse. Software for reliable networks. Scientific American. May
1996.

[9] Richard Bukowski and Carlo Sequin. Interactive simulation of fire in virtual building environments. In
Proceedings of S1GGRAPH 91. 1997.

10] N. Camiel. S. London. N. Nisan. and 0. Regev. The POPCORN project: Distributed computation over
the Internet in Java. In Proc. 6th International World Wide Web Conference. 1997.

11] Henri Casanova and Jack Dongarra. Netsolve: A network server for solving computational science problems.
Technical Report CS-95-313. University of Tennessee. November 1995.

12] J. Casazza. The Development of Electric Power Transmission: The Role Played by Technology. Institutions
and People. IEEE Computer Society Press. 1993.

13] C. Catlett and L. Smarr. Metacomputing. Communications of the ACM. 35(6):44-52. 1992.

14] A. Chien. S. Pakin. M. Lauria. M. Buchanan. K. Hane. L. Giannini. and J. Prusakova. High perfor-
mance virtual machines (HPYM): Clusters with supercomputing APIs and performance. In Eighth SIAM
Conference on Parallel Processing for Scientific Computing (PP97). March 1997.

15] B. Christiansen. P. Cappello. M. Ionescu. M. Neary. K. Schauser, and D. Wu. Javelin: Internet-based
parallel computing using Java. In Proc. 1997 Workshop on Java in Computational Science and Engineering.
1997.

16] K. Czajkowski. I. Foster. N. Karonis. C. Kesselman. S. Martin. W. Smith, and S. Tuecke. A resource
management architecture for metacomputing systems. In The ^/) Workshop on Job Scheduling Strategies
for Parallel Processing. 1998.

17] Joseph Czyzyk. Michael P. Mesnier. and Jorge J. More. The Network-Enabled Optimization System
(NEOS) Server. Preprint MCS-P615-0996, Argonne National Laboratory. Argonne. Illinois. 1996.

18] \Y. Dally. A \~LSI Architecture for Concurrent Data Structures. Kluwer Academic Publishers. 1987.

19] T. DeFanti. I. Foster. M. Papka, R. Stevens, and T. Kuhfuss. Overview of the i-way: Wide area visual
supercomputing. International Journal of Supercomputer Applications. 10(2):123—130. 1996.

20] D. Diachin. L. Freitag. D. Heath. J. Herzog. W. Michels, and P. Plassmann. Remote engineering tools
for the design of pollution control systems for commercial boilers. International Journal of Supercomputer
Applications. 10(2):208-218. 1996.

21] F. Doughs and J. Ousterhout. Transparent process migration: Design alternatives and the Sprite imple-
mentation. Software—Practice and Experience. 21 (8):757—85. 1991.

22] Peter Druschel. Mark B. Abbott. Michael A. Pagels. and Larry L. Peterson. Network subsystem design.
IEEE Network. 7(4):8-17. July 1993.

23] Andrea C. Dusseau. Remzi H. Arpaci. and David E. Culler. Effective distributed scheduling of parallel
workloads. In ACM SIGMETRICS '96 Conference on the Measurement and Modeling of Computer Systems.
1996.

-26-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

[24] S. Dwarkadas. P. Keleher, A. Cox, and W. Zwaenepoel. An evaluation of software distributed shared
memory for next-generation processors and networks. In Proceedings of the 20th International Symposium
on Computer Architecture, San Diego. CA, May 1993.

[25] D. Engler. M. Kaashoek. . and J. O'Toole Jr. Exokernel: An operating system architecture for application-
level resource management. In Proceedings of the Fifteenth ACM Symposium on Operating Systems Prin-
ciples, pages 251-266. ACM Press, 1995.

[26] I. Foster. Designing and Building Parallel Programs. Addison-Wesley, 1995.

[27] I. Foster. J. Geisler. \Y. Gropp, N. Karonis, E. Lusk. G. Thiruvathukal, and S. Tuecke. A wide-area
implementation of the Message Passing Interface. Parallel Computing. 1998. to appear.

[28] Am}' Friedlander. In God We Trust All Others Pay Cash: Banking as an American Infrastructure 1800-
1935. Corporation for National Research Initiatives, Reston. VA, 199.

[29] Amy Friedlander. Emerging Infrastructure: The Growth of Railroads. Corporation for National Research
Initiatives. Reston. VA. 1995.

[30] Amy Friedlander. Natural Monopoly and Universal Service: Telephones and Telegraphs in the U.S. Telecom-
munications Infrastructure 1837-1940. Corporation for National Research Initiatives, Reston. VA. 1995.

[31] Amy Friedlander. Power and Light: Electricity in the U.S. Energy Infrastructure 1870-1940. Corporation
for National Research Initiatives. Reston. VA. 1996.

[32] I. Goldberg. D. Wagner. R. Thomas, and E. Brewer. A secure environment for untrusted helper applications.
In Proceedings of the Sixth Usenix Security Symposium. July 1996.

[33] Jr Harold Lockhart. OSF DCE: Guide to Developing Distributed Applications. McGraw Hill. 1994.

[34] Bernardo Huberman. editor. The Ecology of Computation. Elsevier Science Publishers/North-Holland.
1988.

[35] Van Jacobson. Efficient protocol implementation. In ACM S1GCOMM '90 tutorial. September 1990.

[36] JavaSoft. RMI. The JDK 1.1 Specification. http://javasoft.com/products/
jdk/l.l/docs/guide/rmi/index.html. 1997.

[37] Charlie Lai. Gennady Medvinsky. and Clifford Neuman. Endorsements, licensing, and insurance for dis-
tributed system services. In Proceedings of the Second ACM Conference on Computer and Communications
Security. November 1994.

[38] C. Lee. C. Kesselman. and S. Schwab. Near-realtime satellite image processing: Metacomputing in CC++.
IEEE Computer Graphics and Applications. 16(4):79-84, 1996.

[39] Jason Leigh. Andrew Johnson, and Thomas A. DeFanti. CAVERN: A distributed architecture for sup-
porting scalable persistence and interoperability in collaborative virtual environments.]'irtual Reality:
Research. Development and Applications. 2(2):217-237. December 1997.

[40] A. Lenstra. Factoring integers using the Web and the number field sieve. Technical report, Bellcore. August
1995.

[41] Michael J. Litzkow. Miron Livny, and Matt W. Mutka. Condor—a hunter of idle workstations. In Proceed-
ings of the 8th International Conference of Distributed Computing Systems, pages 104-111. June 1988.

[42] P. Lyster. L. Bergman. P. Li. D. Stanfill. B. Crippe. R. Blom. C. Pardo. and D. Okaya. CASA giga-
bit supercomputing network: CALCRUST three-dimensional real-time multi-dataset rendering. In Proc.
Super-computing '92. 1992.

[43] K. Marzullo. M. Ogg. A. Ricciardi. A. Amoroso. F. Calkins, and E. Rothfus. NILE: Wide-area computing
for high energy physics. Proceedings of the 1996 SIG0PS Conference. 1996.

[44] G. McGraw and E. Feiten. Java Security: Hostile Applets, Holes and Antidotes. John Wiley and Sons.
1996.

■27-

FEUP - Faculdade de Engenharia da Universidade do Porto

[45] C. Mechoso. C.-C. Ma. J. Farrara. J. Spahr. and R. Moore. Parallelization and distribution of a coupled
atmosphere-ocean general circulation model. Mon. Wea. Bev.. 121:2062. 1993.

[46] L. E. Moser. P. M. Melliar-Smith. D. A. Agarwal. R. K. Budhia. and C. A. Lingley-Papadopoulos. Totem:
A fault-tolerant multicast group communication system. Communications of tin ACM. 39(4):54-63. April

1996.

[47] M. Mutka and M. Livny. The available capacity of a privately owned workstation environment. Performance

Evaluation. 12(4):269-84. 1991.

[48] National Research Council. National Collaboratories: Applying Information Technology for Scientific Re-
search. National Academy Press. 1993.

[49] National Research Council. Evolving the High Performance Computing and Communications Initiative to
Support the Nation's Information Infrastructure. National Academy Press. 1995.

[50] National Research Council. More Than Screen Deep: Toward Every-Citizen Interfaces to the Nation's
Information Infrastructure. National Academy Press. 1997.

[51] B. Clifford Neuman and Theodore Ts'o. Kerberos: An authentication service for computer networks. IEEE
Communications. 32(9). September 1994.

[52] J. Nieplocha and R. Harrison. Shared memory NUMA programming on the I-WAY. In Proc. oth IEEE
Symp. on High Performance Distributed Computing, pages 432-441. IEEE Computer Society Press. 1996.

[53] J. Nieplocha. R.J. Harrison, and R.J. Littlefield. Global Arrays: A portable ••shared-memory" programming
model for distributed memory computers. In Proceedings of Supercomputing '94- pages 340-349. IEEE
Computer Society Press. 1994.

[54] M. Norman. P. Beckman. G. Bryan, J. Dubinski. D. Gannon. L. Hernquist. K. Keahey. J. Ostriker.
J. Shalf. J. Welling, and S. Yang. Galaxies collide on the I-WAY: An example of heterogeneous wide-area
collaborative supercomputing. International Journal of Supercomputer Applications. 10(2): 131—140. 1996.

[55] Object Management Group, Inc.. Framingham. MA. The Common Object Bequest Broker Architecture and
Specifications, version 2.0 edition. July 1996.

[56] Scott Pakin. Yijay Karamcheti. and Andrew A. Chien. Fast Messages: Efficient, portable communication
for workstation clusters and mpps. IEEE Concurrency. 5(2):60-73. April-June 1997.

[57] C. Potter. R. Brady. P. Moran, C. Gregory, B. Carragher, N. Kisseberth, J. Lyding. and J. Lindquist.
EYAC: A virtual environment for control of remote imaging instrumentation. IEEE Computer Graphics
and Applications, pages 62-66, 1996.

[58] C. Potter. Z-P. Liang. C. Gregory. H. Morris, and P. Lauterbur. Toward a neuroscope: A real-time system
for the evaluation of brain function. In Proc. First IEEE Int'l Conf. on Image Processing, volume 3. pages
25-29. IEEE Computer Society Press, 1994.

[59] I Richer and B Fuller. The MAGIC project: From vision to reality. IEEE Network. May/June 1996.

[60] Maria Roussos. Andrew Johnson. Jason Leigh. Christina Yalsilakis. Craig Barnes, and Thomas Moher.
NICE: Combining constructionism, narrative, and collaboration in a virtual learning environment. Com-
puter Graphics. 31 (3):62-63. August 1997.

[61] A. Silberschatz. J. Peterson, and P. Galvin. Operating Systems Concepts. Addison-Wesley. 1991.

[62] Larry Smarr. Computational infrastructure: Toward the 21st century. Communications of the ACM.
40(11). November 1997.

[63] Patrick G. Sobalvarro and William E. Weihl. Demand-based rescheduling of parallel jobs on multipro-
grammed multiprocessors. In Proceedings of the Parallel Job Scheduling Workshop at IPPS '95. 1995.

[64] W. Sullivan. D. Werthimer. S. Bowyer. J. Cobb. D. Gedye. and D. Anderson. A new major SETI project
based on project SERENDIP data and 100,000 personal computers. In Astronomical and Biochemical
Origins and the Search for the Life in the Universe. 1997. IAl" Colloquium No. 161.

•28-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

[65] R. Unrau. 0. Krieger, B. Ganisa. and M. Stumm. Hierarchical clustering: A structure for scalable multi-
processor operating system design. The Journal of Supercomputing. 9(l/2):10o—134. 1995.

[66] A. Yahdat, P. Eastham. and T. Anderson. WebFS: A global cache coherent filesystem. Technical report.
Department of Computer Science. VC Berkeley. 1996.

[67] A. Vahdat. P. Eastham, C. Yoshikawa. E. Belani, T. Anderson. D. Culler, and M. Dahlin. WebOS:
Operating system services for wide area applications. Technical Report UCB CSD-97-938, U.C. Berkeley,
1997.

[68] R. van Renesse, K. P. Birman. and S. Maffeis. Horus: A flexible group communication system. Commu-
nications of the ACM. 39(4):76-83. April 1996.

[69] M. van Steen. P. Homburg. L. van Doom, A. Tanenbaum, and \V. de Jonge. Towards object-based wide
area distributed systems. In Proc. International Workshop on Object Orientation in Operating Systems.
pages 224-227, 1995.

[70] T. von Eicken. D. Culler. S. Goldstein, and K. Schauser. Active messages: A mechanism for integrated
communication and computation. In Proceedings of the 19th International Symposium on Computer Ar-
chitecture, pages 256-266. ACM Press. May 1992.

[71] R. YVahbe. S. Lucco, T. Anderson, and S. Graham. Efficient software-based fault isolation. In Proc. l^th
Symposium on Operating System Principles. 1993.

[72] D. Wallach. D. Balfanz. D. Dean, and E. Feiten. Extensible security in Java. Technical Report 546-97.
Dept of Computer Science. Princeton University. 1997.

[73] R. Watson and R. Coyne. The parallel I/O architecture of the high performance storage system (HPSS).
In lJ,th IEEE Symposium Mass Storage Systems. Monterey. CA. September 1995. Comp. Soc. Press.

[74] Glen H. Wheless. Cathy M. Lascara. Arnoldo Yalle-Levinson. Donald P. Brutzman. William Sherman.
William L. Hibbard. and Brian E. Paul. Yirtual Chesapeake bay: Interacting with a coupled physi-
cal/biological model. IEEE Computer Graphics and Applications. 16(4)42-43. July 1996.

[75] S. Zhou. LSF: Load sharing in large-scale heterogeneous distributed systems. In Proc. Workshop on Cluster
Computing. 1992.

[76] S. Zhou. M. Stumm. K. Li. and D. Wortmann. Heterogeneous distributed shared memory (Mermaid).
IEEE Transactions on Parallel and Distributed Systems. 3(5):540—554. September 1992.

-29-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Implementing and Analysing an Effective
Explicit Coscheduling Algorithm on a NOW*

Francesc Solsona1, Francesc Gine1. Fermin Molina1, Porfidio Hernandez2, and
Emilio Luque2

1 University of LLeida, Dept. of CS,
Jaume II 69, 25001 LLeida, Spain,

francesc,sisco,ferminQeup.udl.es
2 UAB, Dept. of CS,

08193 Bellaterra. Barcelona, Spain,
p.hernandez,e.luqueOcc.uab.es

Abstract. Networks of workstations (NOWs) have become important
and cost-effective parallel platforms for scientific computations. In prac-
tice, a NOW system is heterogeneous and non-dedicated. These two
unique factors make scheduling policies on multiprocessor/multicomputer
systems unsuitable for NOWs, but the coscheduling principle is still an
important basis for parallel process scheduling in these environments.
The main idea of this technique is to schedule the set of tasks composing
a parallel application at the same time, to increase their communication
performance. In this article we present an explicit coscheduling algorithm
implemented in a Linux NOW. of PVM distributed tasks, based on Real
Time priority assignment. The main goal of the algorithm is to execute
efficiently distributed applications without excessively damaging the re-
sponse time of local tasks. Extensive performance analysis as well as
studies of the parameters and overheads involved in the implementation
demonstrated the applicability of the proposed algorithm.

1 Introduction

Parallel and distributed computing in a network of workstations (NOWs) re-
ceives ever increasing attention. Recently, a research goal is to build a NOW
that runs parallel programs with performance equivalent to a MPP (Massively
Parallel Processor) and executes sequential programs as a dedicated uniprocessor
too. Nevertheless, two issues must be addressed: how to coordinate the simul-
taneous execution of the processes of a parallel job. and how to manage the
interaction between parallel and local user jobs.

The studies in [1] indicate that the workstations in a NOW are normally
underloaded. Basically, there are two methods of making use of these CPU idle
cycles, task migration [2,3] and job scheduling [4-6]. In a NOW, in accordance
with the research realized by Arpaci [7]. task migration overheads and the un-
predictable behavior of local users may lower the effectiveness of this method.

* This work was supported by the CICYT under contract TIC98-0433

FEUP - Faculdade de Engen haria da Universidade do Porto

Our research was focussed on the approach of keeping both local and parallel
jobs together and effective, and efficiently scheduling them.

A NOW system is heterogeneous and non-dedicated. The heterogeneity can
be modeled by the Power weight [8]. As for the non-dedicated feature, a mech-
anism must be provided to ensure that no extra context switch overheads due
to synchronization delays are introduced. Outerhout's solution for timeshared
multiprocessor systems was coscheduling [9]. Under this traditional form of
coscheduling, the processes constituting a parallel job are scheduled simulta-
neously across as many nodes of a multiprocessor as they require.

Explicit coscheduling [9,5] ensures that scheduling of communicating jobs is
coordinated by constructing a static global list of the order in which jobs should
be scheduled; a simultaneous global context switch is then required in all the
processors. Zhang [4], based on the coscheduling principle, has implemented the
so-called "self-coordinated local scheduler", which guarantees the performance
of both local and parallel jobs in a NOW by a time-sharing and priority-based
operating system. He varies the priority of the processes according to the power
usage agreement between local and parallel jobs.

In contrast with Zhang's study, a real implementation of explicit coscheduling
in a NOW is presented in this article; so that the user of the parallel machine
has all the computing power of the NOW available during a short period of time
with the main aim of obtaining good performance of distributed tasks without
excessively damaging the local ones.

In section 2, the environment DTS (Distributed Scheduler) where the cosche-
duling implementation is built will be introduced. In section 3, our explicit
coscheduling algorithm of PVM distributed tasks in a Linux NOW is presented.
Also, a synchronization algorithm that improves the performance of the message
passing in distributed tasks is proposed. In section 4. the good behavior of the
implemented algorithms is checked by means of measuring the execution time
on both synthetic applications and NAS benchmarks: in addition, the response
time of local jobs and other parameters and overheads of special interest are
measured. Finally, the last section includes our conclusions and a description of
the future work.

2 DTS Environment

We are interested in assigning a period of time to distributed tasks and an-
other to interactive ones, and varying these dynamically according to the local
load average of a NOW. Also, our aim is to avoid modifying the kernel source,
because of the need of a portable system. Our solution consists of promoting
the distributed tasks (initially timesharing) to real-time. Furthermore, in each
workstation all the distributed tasks were put in the same group of processes: it
allows control of their execution by means of stop and resume signals. In such
a way that, this splits the CPU time in two different periods, the parallel slice
and the interactive one.

-32-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

The implemented system, called DTS, which is an improved version of the
original described in [10] is composed of three types of modules, the Sched-
uler, the Load and the Console. The Scheduler and the Load are composed of
distributed processes running on each active workstation. The function of each
Scheduler is the dynamic variation of the amount of CPU cycles exclusively as-
signed to execute distributed tasks (PS: Parallel Slice), and the amount of time
assigned to local tasks (IS: Interactive Slice). The Load processes collect the
interactive load on every workstation. The Console can be executed from any
node of the NOW and is responsible for managing and controlling the system.
For notation convenience the set of active nodes in the NOW are called VM
(Virtual Machine), (see Figure 1).

- NODt^

-*■ Communication
-». Creation

DTS environment"

(FVM.TASKk NODEi (LOCAL.TASK;

---("Scheduler)

C Load "T

Fig. 1. DTS environment.

Our environment is started running automatically by the pvm environment.
In each workstation composing our VM. the pvmd shell script has been modified
as follows: the sentence "exec $PVM-ROOT/lib/pvmd3 $@" has been changed
to "exec $PVM-ROOT/lib/scheduler $@". This way. when the workstation is
added/activated to the virtual machine (even if it is the first) from the pvm
console, the Scheduler is executed.

3 Coscheduling Implementation

In this section the coscheduling algorithm implemented over the DTS's sche-
duler daemon is explained. Furthermore, some improvements in communication
performance of the system are presented with the addition of a synchronization
algorithm of the distributed tasks.

33-

FEUP - Faculdade de Engen ha riet da Universidade do Porto

3.1 Coscheduling Algorithm

The coscheduling algorithm is shown in the Figure 2.

Scheduler

set PRI{ Scheduler) = ((max(rt-pnority)) and SCHED JIFO)
fork&exec(Load)
fork&exec(pt;md)
set PRl(pvmd) = ((max(rt.pnoniy) - 1) and SCHEDJtR)
set PRI(Loftd) = ((m&x{rt.priority) - 2) and SCHEDJIFO)
set pvmd leader of pvmJasks

sync_p:
yvhi\e(pvmAasks) do

sleep(PS)
signaLstop (pvmAasks)
sleep(IS)
signaLresume (pvmJasks)

end/*\vhile*/

Fig. 2. Coscheduling algorithm

At the beginning of execution, the Scheduler, which has root permissions,
promotes itself to Real Time class (initially time shared). After that, it forks
and executes Load and pvmd (the pvm daemon), and also promotes pvmd and
Load to -1 and -2 Real Time priority lower than Scheduler respectively. Next.
Scheduler, sets pvmd to become the leader of a new group of processes (denoted
by pvm.tasks; this group will be composed of all the pvm tasks that pvmd will
create).

The scheduling policy of every process (SCHED-FIFO or SCHED-RR) is
shown in the algorithm too, and denotes a FIFO or Round Robin scheduling
respectively. Scheduler and Load have a FIFO policy because of their need to
finish their work completely before they release the CPU. On the other hand.
pvmd can block waiting for the receipt of an event, and meanwhile grant the
CPU to another process, perhaps at the same priority level (a pvm task). For
this reason, the scheduling policy has to be Round Robin.

Following this, the Scheduler enters in a loop where each iteration takes IP
(Iteration Period) ms, where IP = PS + IS. This loop stops when there are
no more pvm tasks (including the pvmd). This occurs when the workstation is
deleted from the pvm console.

Thus, after the Parallel Slice (PS), all the Schedulers in the YM stop all the
pvm tasks by sending a STOP signal to the group of PYM processes leadered
by pvmd. After that, they are resumed at the end of the interactive slice by
sending them a CONTINUE signal. Because the distributed tasks are running
in real-time class, they have a global priority higher than the interactive ones.

-34-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Thus, when they are resumed, they take control of the CPU. In this way, an
interval of execution is assigned to distributed tasks and other interval (can be
different) to interactive ones. Figure 3 shows the behavior of the DTS scheduler:
each time the Scheduler is executed (during an insignificant time), it concedes
the CPU alternatively to the distributed (PS period) and to the interactive (IS
period) tasks.

Scheduler
DTS

Distributed
Tasks

Interactive
Tasks

Prio ity

n z z Z Z rz rz z
■ fcät fcMifcs!

: PS is;
Time (ms)

IP ip IP

Fig. 3. DTS environment behavior

3.2 Scheduler Synchronization

Only the algorithm of each Scheduler that runs in the YM has been explained,
but how are they synchronized to execute the parallel and the interactive slice at
the same time and how are these slices modified according to the Load Average
in the VM? Figure 4 shows the schematic algorithm that has been used to solve
these two questions.

The tasks composing a distributed' application can have basically CPU or
message passing intensive phases. In the first case, it is unnecessary to syn-
chronize the tasks. On the other hand, in the second case, the synchronization
between the communication tasks can increase the global performance of the
distributed application [7]. For this reason, DTS has two different modes of ope-
ration. In the Dynamic mode, the PS and IS periods are synchronized over all
the distributed tasks, whereas in the Distributed mode, the CPU intensive tasks
are not synchronized at all.

Every Load Interval (LI), all the Load processes collect the real CPU queue
length (qj). The work done by Ferrary [11] shows that the length of the ready
queue is a good index for measuring the load of a workstation. After N (Number
of LI intervals of passed history to take into account) the Load Index, denoted
as Qi, is computed and a message containing the load is sent to the Console.
Exponential smoothing is used to compute the Load Index, defined as follows:

-35-

FEUP - Faculdade de Engenharia da Universidade do Porto

Loady VMj € VM
i = 0, <#_!=()
Each LI interval do

collect (g,)
collect (Net-Activity)
compute(Q^)
if (++i mod(N) == 0)

if (Net-Activity < Network JTreshdld)
set MODEJDTS = DISTRIBUTED
compute(P SkIS)
set PSkIS

else
set MODE-DTS = DYNAMIC
if (\Q3i ~ Qi-il < LoadJTreshold))

send(Conso/e.<5j)

Console: Node Master
if (MODE_DTS==DYNAMIC)

while(timeout)do
for each Mj € I'M async_receive(Qj)

compute(RL A,P Ski S)
broadcast (PSkIS)

if (MODE-DTS == DYNAMIC)
async_receive(PS&/S)
set PSkIS
goto sync-p

Fig. 4. Synchronization Algorithm. Console is in the node master. There is a Load and
Scheduler module in each node of the \"M

Q< = Q,-_1e-
p + «?,-(l-e-p);!>l, (1)

where Qt-\ is the last computed index, g,- is the real CPU queue and P = ■£*.
Taking into account the studies done by Ferrari [11]. a LI of 100 ms and A' of
10 has been chosen.

Note that when Load collects qi, the distributed tasks are stopped, waiting
out of the Ready queue. For this reason, the distributed tasks are not computed.
In another situation, as for example systems where the priority of distributed
tasks is increased and decreased periodically, the need to distinguish between
distributed and interactive tasks adds a great overhead to the system.

In Figure 4 is important to observe how DTS activates automatically either
the DISTRIBUTED or the DYNAMIC mode of operation in each workstation.

-36-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

depending on the network activity {Net.Activity). The network activity is the
number of messages sent or received every Ar * LI intervals by the pvmd. The
behavior of the nodes which operates in DISTRIBUTED or DYNAMIC mode is
explained separately below.

One centralized algorithm has been implemented, due basically to perfor-
mance requirements of the local applications. On the other hand, if the algo-
rithm was distributed, it would reduce the performance of the interactive tasks
and would increase the network activity due to the high activity of the Load
module, for example sending the load index of each node to all the VM.

Dynamic Mode In the reception of the Load indexes from all the active nodes
or after a timeout, the Console computes the Relative Load Average (RLA), a
metric used in DYNAMIC mode to fix the parallel and interactive slice on each
workstation. The RLA is defined as follows:

RLA =
Qi

Mj(-4)

NW
(2)

where Q\ is the load index of workstation j, NW the number of workstations in
the VM and Wj{A) the power weight of workstation j. The power weight [8] is
defined as follows:

Wj(A) =
Sj(A)

m,ax™{Sk(A)}-
1...NW (3)

where Sj{A) is the speed of the workstation Mj to solve an application of size A
on a dedicated system. Nevertheless, the experimental results in [8] show that if
applications fit in the main memory, the power weight differences, using several
applications, are insignificant.

Table 1, which shows the relation between the RLA, PS and IS, is used
to compute the PS and 75. The values of PS and IS shown in the table are
percentages of the IP period.

Table 1. Relation between RLA. PS and IS

RLA IS PS
0< RLA <0.25 10 90

0.25< RLA <0.5 20 80
0.5< RLA <0.75 30 70
0.75< RLA <1 40 60
K. RLA <1.25 50 50

1.25< RLA <1.5 60 40
1.5< RLA <1.75 70 30
1.75< RLA <2 80 20

2< RLA 90 10

■37-

FEUP - Faculdade de Engenharia da Universidade do Porto

The Console sends PS and 75 to all the Schedulers modules by a broadcast
message. Broadcast delivery has been chosen due to the high cost of multicasting
or sending a message separately to each node of the VM. On asynchronous
reception (done by a message handler), each Scheduler process sets its parallel
and interactive slices and jumps to a predetermined address, the label sync.p
(synchronization point) in the algorithm of Figure 2.

Distributed Mode Each workstation executing in this mode does not exchange
many messages, the communication can even be null. Therefore, synchronization
is not required. The only factor to take into account is the efficient share of the
CPU between the distributed and local tasks, so that each workstation sets the
PS and IS slices according to its own sequential workload. Each node computes
these values according to Table 1 too, but substituting RLA for Q, (the Load
Index).

4 Experimentation

Our experimental environment is composed of eight 350 MHz Pentium with 128
MB of memory and 512 KB of cache. All of them are connected through an Eth-
ernet network of 100Mbps bandwidth and a minimal latency in the order of 0.1
ms. All our parallel experimentation was carried out in a non dedicated environ-
ment with an owner workload (defined as the averaged ready queue length) of
0.5 (Light). 1 (Medium) and 2 (Heavy). Workload characterization was carried
out by means of running a variable number of processes in background, represen-
tatives of the typical programs of personal workstations. The performance of the
rescheduling implementation was evaluated by running three kernel benchmarks
from the XAS parallel benchmarks suite [12]: ep, an embarrassingly application,
is. an integer sorting parallel application and mg. a parallel application that
solves the Poisson problem using multi-grid iterations. Also, two synthetic ap-
plications, sinring and sintree were implemented, representative of two types of
communication patterns. The first implements a logical ring (see Figure 5(a)).
and the second attends for the communication of one to vary, and vary to one
(see Figure 5(b)). In both applications, every node executes different processes
sequentially during a fixed period of time, which is an input argument (1 ms by
default). The number of iterations of both problems is also an input argument.
Table 2 shows the benchmarks parameters used in the experimentation and the
execution times obtained with PVM.

Two different performance indexes are used:

- Gain (G): This metric was used for evaluating the performance of our DTS
system with respect to the original PYM. The gain is defined as follows:

G^^JJL {4)
-* sched

■38-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

® -0

S3

(a)

Fig. 5. benchmarks: sinring (a) and sintree (b)

Table 2. Results obtained with PVM version 3.4.0

Bench. Problem Size PVM (sec)
Light Medium Heavy

ep 2'J8 202 244 694

is 2-3-[0..2la] 126 149 253
mg 256x256x256 645 1336 1976

sintree 20000 iterations 92 160 210
sinring 80000 iterations 203 255 377

where Tpvm (in seconds) is the execution time of one application in the
original PVM environment and Tsched (in seconds) is the execution time of
the same application in the DTS system.
Local Overhead (LO): This metric was used to quantify the local workload
overhead introduced by the execution of the parallel applications. One of the
scripts used for the simulation of the Heavy workload(a compilation process)
was taken as a reference. The LO metric is defined as follows:

LO =
ETn ondedicated ■ET, dedicated

(5)
■&-1 dedicated

where ETdedjcnted is the execution time spent by the compilation process
in a dedicated workstation (86 s), and ETnondedicattd is the execution time
obtained by executing the script together with parallel applications.

4.1 Network Threshold

As the algorithm of Figure 4 shows, depending on the value of the network
threshold, DTS activates the Dynamic or the Distributed mode of operation. In
this section, the best threshold value has been studied. The results shown in the
table 3 were obtained with our synthetic benchmark, sinring. whose network and
CPU activity was under our control, since the sequential time of every process
is an input argument of the benchmark. The experimentation was carried out
with a medium owner workload.

The network activity of every node, showed in the column called Net-Activity.
was obtained by measuring the average number of packets received and delivered
by the pvm daemon. Table 3 shows the DTS gain, calculated in accordance with
the formula 4. obtained with our benchmark with two different values of the

-39-

FEUP - Faculdade de Eneenharia da Universidade do Porto

Table 3. DTS Gain according to the network threshold value

Bechmarks Net .activity Network Threshold

0 300 600 900 1200 1500

sinring 200 0.95 1.12 1.23 1.22 1.31 1.24

sinring 990 1.42 1.41 1.28 1.19 0.94 0.93

network activity when the threshold was varied between 0 and 1500 calls per
second. As was expected, the results depend on the value of the threshold and the
network activity of the benchmark. For a low communication benchmark case is
better a high threshold whereas for a high communication benchmark is better
a low threshold. Taking into account the above results, we have implemented
DTS with a variable network threshold defined by the user.

4.2 DTS Performance

Table 4 shows the gain obtained in the execution of the three NAS benchmarks
when they are executed in the DTS environment and with two different values
of the IP period. 100 ms and 1000 ms. Table 5 shows the Local overhead in
the execution of a compilation script when it is executed together with different
parallel benchmarks. The behavior of the DTS environment can be determined
comparing these two tables.

Table 4. Scheduler results

Bench. Gain
IP = 100ms IP=1000ms

Light Medium Heavy Light Medium. Heavy

ep 0.91 1.13 1.26 0.96 1.14 1.24
is 0.99 1.09 1.12 1.01 1.15 1.21

mg 0.95 1.4 1.53 0.97 1.43 1.51

Table 5. Local Overhead obtained with DTS environment

Bench. Local Overhead
IP=100 ms IP=1000 ms

ep 2.25 2.65
is 0.75 0.80

mg 1.12 1.17

First of all. it is important to determine the IP value. An IP of 1000 ms
increases the local overhead of interactive local tasks (see Table 5) even if there
is a light distributed workload. On the other hand, a value of less than 100 ms

-40-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

increases the overhead produced by the addition of context switches. Taking
these two considerations into account, an IP value of 100 ms was chosen and it
is used in the rest, of the article.

From Table 4, it can be observed that in the ep case, a computing intensive
benchmark, the results obtained in DTS with a light load are worse than in the
PVM due to the additional overhead introduced by the DTS. On the other hand,
since the DTS assigns to ep a better percentage of time than the PVM in the
heavy case, the results are better.

Globally, for high message passing applications, is and mg. better results
were obtained due to the synchronization between periods.

In general, the DTS environment gains with respect to the original PVM in
the cases when there is almost some local load. Obviously, this gain is at the
expense of the local overhead introduced by DTS environment as shown in Table
5, which, with the exception of the computing intensive distributed tasks, is very
low and even it is reduced (is case).

4.3 Local Load Measurements

The performance of the distributed tasks can be improved at expense of a mo-
derate local overhead, but how is the response time of the local applications
affected?

With the aim of answering this question, comparison was made with the
average response time of an implemented local benchmark which is executed
jointly with one of the distributed benchmarks. The local benchmark continu-
ously obtains the status of the standard output for printing by means of the
select system call. The distributed benchmarks used were the sintree and sinring
(message passing intensives) and ep (CPU bound). Table 6, shows the average
and the maximum response time (max) in microseconds of three benchmarks,
obtained in the two environments.

Table 6. Response time measurements (in fis). In the DTS case, IP = 100 ms

Bench. PVM DTS
average\ max average max

sinring 6.13 201 5.93 247
sintree 6.01 454 5.94 477

ep 15.65 18043.7 29.81 20037.5

Table 6 shows that in any case the DTS system increases the response time
of the local benchmark excessively. It is only slightly significant in the case
of ep, but this response time overhead was not appreciated by the local user.
Approximately the 98% of the collected samples were 5 or 6 /us (the response
time of the select o.s. system call used in normal conditions), and only the 25c
take higher values (due to the execution of the distributed benchmark), that

-41 -

FEUP - Faculdade de Engenharia da Universidade do Porto

increases significantly the average. We can conclude that with an IP of 100 ms
the overhead added for the distributed tasks does not damage the response time
of local applications excessively.

4.4 Coscheduling Skew

The method used in implementing coscheduling is delivered by broadcasting a
short message to all the nodes in the cluster. The PS and IS intervals must be
synchronized between two pair of nodes but, due to the synchronization algo-
rithm, some skew always exists between them. The coscheduling skew (6) is the
maximum out of phase between two arbitrary nodes, formally:

S = max (broadcast) — min(broadcast) (6)

where max (broadcast) and min (broadcast) are the maximum and minimum time
in sending a short broadcast message. We have mesured a coscheduling skew (6)
of 0.1 ms with the aid of the lmbench [13] benchmark. This value is insignificant
in relation to the 100 ms of the IP interval. Thus, the coscheduling skew has no
significant influence on the performance of the DTS system.

4.5 Context Switches

With the help of an implemented program (named getcontext) the context switch
cost was measured in each workstation in function of the process size. The work
done by getcontext was simulated as the summing up of a large size array before
passing on one token (a short message) to the next process. The processes (a
variable quantity) were connected in a ring of Unix pipes. The summing was
an unrolled loop of about 2.7 thousand instructions. The effect was that both
the data and the instruction cache was polluted to an extent before the token
was passed on. Passing the size of a benchmark to getcontext as argument, it
computed the context switch costs of that benchmark.

Table 7 shows the sizes of the measured benchmarks, ep and sinring, and
their correspondent context switch costs. The benchmarks that fit in the main
memory (the sum of its Resident Set Size and the memory of the o.s. applications
< 128 Mbytes) were chosen, and those that overlap it (is and mg) were discarded.
This solution was adopted to avoid the extra overhead added by the swapping
latency for large applications that may cause inaccuracies in our measurements.

Also, the number of context switches obtained with the ep and sinring bench-
marks in the two environments (original PYM and DTS (IP = 100ms) with
medium owner workload) were measured. The results are shown in Figure 6.

In Figure 6 it can be seen that in the case of the benchmark with high
communications (sinring). the number of context switches is lower in the DTS
case due to the synchronization between distributed tasks. In the case of ep. the
number of context switches is increased by the DTS environment because ep
must release CPU in each PS period. Thus, DTS system helps only the message
passing applications.

■42-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Table 7. Sizes of the benchmarks: VI (Virtual Image: text + data 4- stack) and RSS
(Resident Set Size) in Kbytes. Context switch costs (in fis) of one instance of the
benchmark when one copy (lp.) or two (2 p.) were executed

Bench. VI RSS 1 p. 2 p.
ep 1160 596 2263 2902

sinring 1088 592 2182 2885

sinring

40000

35000

30000 ■

| 25000 ■
o
| 20000 ■

* 15000
u

10000 ■

5000

0

DTS/'

500 1000 1500

Time(xlOOms)

250000

200000

| to

! | 150000

-; |
j * 100000

o

1 50000

0
2000 200 400 600 800 1000

Time(xlOOms)

Fig. 6. ep and sinring context switches

5 Conclusions and Future Work

The DTS environment, which implements explicit coscheduling of distributed
tasks in a non dedicated NOW has been introduced. Studying the communica-
tion architecture of the distributed applications and enabling each node of the
system to change dynamically its configuration (dynamic and distributed), the
communication performance of distributed applications was improved without
damaging the performance of local ones excessively. Normally, the distributed
tasks with high demand of CPU have not shown any improvement, but in these
cases the overhead added to local tasks is not very significant.

We are interested in developing more efficient methods for synchronization,
thus decreasing the overhead introduced in the coscheduling of distributed tasks.

In the future, we are interested in increasing the facilities of the DTS envi-
ronment. The most important goal is to provide the DTS environment with the
ability to run. manage and schedule more than one distributed applications and
modify the scheduler algorithm according to this new functionality.

The dynamic mode algorithm of the DTS environment has a centralized na-
ture. Furthermore the Console and the Master scheduler are localized in one
module. If the Master module fails, the system goes down and there is no possi-
bility of recovering the work done. Even if one node (not the Master) fails, the
distributed application will stop abnormally and invalidate the execution of the

■43-

FEUP - Faculdade de Engenharia da Universidade do Porto

distributed application, perhaps for a long period of time. The solution is to pro-

vide the DTS environment fully distributed behavior. For the accomplishment

of these objectives we have to study and propose new algorithms to implement

fault tolerance.

References

1. Anderson, T., Culler. D., Patterson, D. and the Now team: A case for NOW (Net-
works of Workstations). IEEE Micro (1995) 54-64

2. Litzkow, M., Livny, M., Mutka, M.: Condor - A Hunter of Idle Workstations. Pro-
ceedings of the 8th Int'l Conference of Distributed Computing Systems (1988) 104-

111
3. Russ, S., Robinson, J., Flachs, B., Heckel. B.: The Hector Distributed Run-Time

Environment. IEEE trans, on Parallel and Distributed Systems, Vol.9 (11), (1988)
4. Du, X.. Zhang, X.: Coordinating Parallel Processes on Networks of Workstations.

Journal of Parallel and Distributed Computing (1997)
5. Crovella, M. et al: Multiprogramming on Multiprocessors. Proceedings of 3rd IEEE

Symposium on Parallel and Distributed Processing (1994) 590-597
6. Dusseau. A.. Arpaci. R., Culler, D.: Effective Distributed Scheduling of Parallel

Workloads. ACM SIGMETRICS'96 (1996)
7. Arpaci. R., Dusseau, A., Vahdat, A., Liu, L., Anderson, T.. Patterson, D.: The

Interaction of Parallel and Sequential Workloads on a Network of Workstations. ACM
SIGMETRICS'95 (1995)

8. Zhang. X., Yan Y.: Modeling and Characterizing Parallel Computing Performance
on Heterogeneous Networks of Workstations. Proc. Seventh IEEE Symp. Parallel and
Distributed Processing (1995) 25-34

9. Ousterhout, J.: Scheduling Techniques for Concurrent Systems. Third International
Conference on Distributed Computing Systems (1982) 22-30

10. Solsona. F., Gine, F., Hernandez, P.. Luque, E.: Synchronization Methods in Dis-
tributed Processing. Proceedings of the Seventeenth IASTED International Confer-
ence. Applied Informatics (1999) 471-473

11. Ferrari, D., Zhou, S.: An Empirical Investigation of Load Indices for Load Balanc-
ing Applications. Proc. Performance '87, 12th Int'l Symp. Computer Performance
Modeling, Measurement, and Evaluation. North-Holland. Amsterdam (1987) 515-
528

12. Parkbench Committe: Parkbench 2.0. http://www.netlib.org/park-bench (1996)
13. Mc. Yoy, L., Staelin, C: lmbench: Portable tools for performance analysis. Silicon

Graphics. Inc, ftp://ftp.sgi.com/pub/lm-bench.tgz (1997)

-44-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

An Approximation Algorithm for the Static
Task Scheduling on Multiprocessors

Janez Brest, Jaka Jejcic, Aleksander Vreze. and Viljem Zumer

University of Maribor
Faculty of Electrical Engineering and Computer Science

Smetanova 17, 2000 Maribor, Slovenia
janez.brestSuni-mb.si

Abstract. In this paper we proposed a new multiprocessor scheduling
algorithm, called MCP/AM, which is based on well known MCP algo-
rithm. Both, the MCP/AM and MCP algorithms have the same com-
plexity of 0{rr log v), where v is the number of nodes in the task graph.
Algorithm, described in this paper, does not model communication time,
that is, it assumed that the data transmissions between processors did
not take any time.
The MCP/AM algorithm outperforms two other algorithms (ETF and
MCP) by generating similar or better solution in the term of the schedul-
ing length.

Keywords: Parallel processing, directed acyclic graph, task scheduling, com-
piler.

1 Introduction

Multiprocessor systems [9,16,6.17] are increasingly being used to meet the high
performance and intense computation needs of today's applications.

To efficiently execute a program on a multiprocessor system, it is essential
to solve a minimum execution time multiprocessor scheduling problem [13.11].
which determines how to assign a set of tasks to processors and in what order
those tasks should be executed to obtain the minimum execution time.

The tasks can then be scheduled to the processors for execution by using a
suitable scheduling algorithm, static in compile-time or dynamic in run-time [5,
7,3]. In this paper static scheduling is discussed.

Static scheduling, except for a few highly simplified cases, is an NP-complete
problem. Thus, heuristic approaches are generally sought to tackle the problem.
Traditional static scheduling algorithms attempt to minimize the schedule length
through iterative local minimization of the start times of individual tasks.

On the other hand for example the Dynamic Level Scheduling (DLS) al-
gorithm dynamically selects tasks during the scheduling process [12]. However,
like most greedy algorithms, these scheduling approaches cannot avoid making
a local decision which may lead to an unnecessarily long final schedule.

•45-

FEUP - Faculdade de Engenharia da Universidade do Porto

"Although static scheduling is done at compile-time and therefore can afford
some extra time in generating a better solution, back-tracking techniques are
not employed to avoid high complexity.

The scheduling problem is intractable even when severe restrictions are im-
posed on the task graph and the machine model. As optimal scheduling of tasks
is a strong NP-hard problem, many heuristic algorithms have been introduced
in the literature [4]. The following simplifying assumptions about the task graph
and the machine model are common in Bounded Number of Processor (BNP)
Scheduling [2]:

1. the communication costs on the edges are zero;
2. the processors are.fully connected;
3. the processors are homogeneous, that is, their processing speeds are the

same.

Due to the intractability of the problem, heuristics are devised for obtaining
suboptimal solutions in an affordable amount of computation time. Even though
most heuristics can produce high quality solutions, their time complexities are
quite high. Furthermore, heuristics designed with more relaxed assumptions tend
to incur higher time complexities. Thus, many heuristics work well for small
task graphs but do not scale well with the problem size. Therefore, the solution
quality and applicability are usually in conflict with the goal of reducing the
time complexity [2].

In this paper we proposed a low time complexity multiprocessor scheduling
algorithm, called MCP/AM, which is based on critical path (CP) algorithm, such
as, for example, the MCP [18] algorithm. It generates high quality scheduling
solutions.

The remaining paper is organized as follows: In the next section, we present
a brief overview of various approaches that have been proposed for the DAG
scheduling problem. In Sect. 3, we present the proposed algorithm, and discuss
its design principles. Section 4 includes some scheduling examples illustrating
the operation of the algorithm. We present the experimental results in Sect. 5.
and conclude the paper with some final remarks in Sect. 6.

2 The Multiprocessor Scheduling Problem

In static scheduling, we represent a parallel program by a directed acyclic graph
(DAG) [6,16.9,15]. In a DAG, G = (V,E), V is a set of r nodes, representing
the tasks, and E is a set of e directed edges, representing the communication
messages. Edges in a DAG are directed and, thus, capture the precedence con-
straints among the tasks. The cost of node n,, denoted as w(rij). represents the
computation cost of the task. The cost of the edge, emerges from the source
node n, and incidents on the destination node n.j, denoted by Cjj. represents the
communication cost of the message.

The source node of an edge is called a parent node, while the destination
node is called a child node. A node with no parent is called an entry node and a

-46-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

node with no child is called an exit node. A node can only start execution after
it has gathered all of the messages from its parent nodes. The b-level of a node
is the length (sum of the computation costs only) of the longest path from this
node to an exit node. The t-level of a node is the length of the longest path from
an entry node to this node (excluding the cost of this node).

Figure 3 shows an example of the DAG which we will use in the subsequent
discussion.

The objective of scheduling is to minimize the schedule length, which is
defined as the maximum finish time of all the nodes, by properly assigning tasks
to processors such that the precedence constraints are preserved.

The existing scheduling algorithms are classified into four categories by Ah-
mad and Kwok [2]:

1. Bounded Number of Processors (BNP) Scheduling: A BNP algorithm sched-
ules a DAG to a limited number of processors directly. The processors are
assumed to be fully connected without any regard to link contention and
scheduling of messages. The proposed algorithm belongs to this class.

2. Unbounded Number of Clusters (UNC) Scheduling: A UNC algorithm sched-
ules a DAG to an unbounded number of clusters. The clusters generated
by these algorithms may be mapped onto the processors using a separate
mapping algorithm. These algorithms assume the processors to be fully con-
nected.

3. Arbitrary Processor Network (APN) Scheduling: An APN algorithm per-
forms scheduling and mapping on an architecture in which the processors
are connected via a network topology. An APN algorithm also explicitly
schedules communication messages on the network channels, taking care of
the link contention factor.

4. Task-Duplication-Based (TDB) Scheduling: A TDB algorithm duplicates
tasks in order to reduce the communication overhead. Duplication, however,
can be used in any of the other three classes of algorithms.

For our purpose, we will compare the proposed algorithm with two other
BNP algorithms (ETF and MCP).

The proposed algorithm is based on the classic list scheduling technique [13,
1]. The basic idea of list scheduling is to make a scheduling list (a sequence of
nodes for scheduling) by assigning them some priorities, and then repeatedly
execute the following two steps until all the nodes in the graph are scheduled:
(1) Remove the first node from the scheduling list: (2) Allocate the node to a
processor which allows the earliest start time.

In a traditional scheduling algorithm, the scheduling list is statically con-
structed before node allocation begins, and, more importantly, the sequencing
in the list is not modified.

The ETF Algorithm

The Earliest Task First (ETF) algorithm [8] uses static node priorities and as-
sumes only a bonded number of processors [13,14]. At each scheduling step, the

•47-

FEUP - Faculdade de Engenharia da Universidade do Porto

ETF algorithm first computes the earliest start times for all the ready nodes and
then selects the one with the smallest value of the earliest start time. A node
is ready if all its parent nodes have been scheduled. The earliest start time of
a node is computed by examining the start time of the node on all processors
exhaustively. When two nodes have the same value of the earliest start times,
the ETF algorithm breaks the tie by scheduling the one with a higher static
priority. The complexity of the ETF algorithm is 0(pv'2), where p is the number
of the processing elements in the target machine, and v in the number of nodes
in the task graph.

The MCP Algorithm

Similar to the ETF algorithm, the Modified Critical Path (MCP) algorithm [18]
constructs a list of tasks before the scheduling process starts.

The MCP algorithm uses the ALAP (As-Late-As-Possible) start time of a
node as the scheduling priority. The MCP algorithm first computes the ALAPs
of all the nodes, then constructs a list of nodes in ascending order of ALAP
times. Ties are broken by considering the ALAP times of the children of a node.
The MCP algorithm then schedules the nodes on the list one by one so that
a node is scheduled to a processor that allows the earliest start time using the
insertion approach. The MCP algorithm looks for an idle time slot for a given
node. The algorithm is briefly described in Fig. 1 [18,13].

(1) Compute the ALAP time of each node.
(2) For each node, create a list which consists of the ALAP times of the node

itself and all its children in descending order.
(3) Sort these lists in ascending lexicographical order. Create a node list ac-

cording to this order.

Repeat
(4) Schedule the first node in the node list to a processor that allows the earliest

execution, using the insertion approach.
(5) Remove the node from the node list.
Until the node list is empty.

Fig. 1. The MCP algorithm.

The complexity of the MCP algorithm is 0(v2 logu).

3 The Approximation Algorithm

In this section we present the proposed scheduling MCP/AM algorithm.
The multiprocessor scheduling problem treated in this paper is to determine a

non-preemptive schedule to minimize the execution time (or the schedule length)

-48-

VECPAR '2000 - 4 th International Meeting on Vector and Parallel Processing

when a set of v computational tasks having arbitrary precedence constraints
and arbitrary processing time are assigned to p processors of the same ability
for execution. These tasks are represented by a task graph (DAG) as shown in
Fig. 3.

It is assumed that the target platform is a multiprocessor system and the
communication costs between nodes are zeros.

Table 1 summarizes the definitions of the notations used throughout the
paper.

Table 1. Definitions of Notations

Notation Definition
■n,

w(rii)
Cij

v
e
P

CP
EST

ALAP
SLj(i)

A node in the parallel program task graph
The computation cost of node n,
The communication cost of the directed edge from node n, to n,
The total number of nodes in the task graph
The total number of edges in the task graph
The number of processing elements in the target multiprocessor system
A critical path of the task graph
The earliest start time
The As-Late-As-Possible start time
The schedule length of the step i of the scheduling process on the pro-
cessor j

A node can be scheduled to a processor if the processor has an idle time
slot that starts later than the node's parents finish times and is large enough to
accommodate the node. The simple procedure in [13] outlines the computation
of the start time of a node on a processor.

In the following, we discuss some of the principles used in the design of
our algorithm. To minimize the final schedule length, we select a node as it' is
selected in the MCP algorithm, which is described in Sect. 2. At each step of the
scheduling process, the first node is removed from the list of nodes (list of nodes
is sorted in increasing lexicographical order of the latest possible start times)
and it is scheduled to a processor.

While we are able to identify a selected node, we still need a method to select
an appropriate processor for scheduling that node into the most suitable idle time
slot. At each step, the algorithm needs to find the most suitable processor which
contains the most suitable place in time for a selected node.

The MCP algorithm schedules the selected node to a processor that allows for
the earliest start time. Our MCP/AM algorithm has another processor selection
criteria and it is described in Fig. 2.

The function Build-ALAPQ computes the ALAP time of each node and
create a list, which consists of the ALAP times of the node itself and all its chil-

-49-

FEUP - Faculdade de Engenharia da Universidade do Porto

Bvild-ALAPQ: //As late as possible time for each node

Sort-iLAPQ: // See the MCP algorithm

for (i = 0; i < v: i++)

{
U = EST(ALAP(n;));

// v is number of tasks

// Earliest start time of node rii in a
ALAP list
// SLj (i) is schedule length of the step i
of the scheduling process on the processor

if a processor j exists ■where
J
// Processor selection

SLj{i) = U
then

schedule node n, to the processor j
else

schedule node n, to a processor tha t
allows the earliest execution

}

Fig. 2. The MCP/AM algorithm.

dren in descending order. Function Sort.ALAP() sorts these lists in ascending
lexicographical order as in the MCP algorithm.

Assumed that, in the scheduling process there are already scheduled i — 1
nodes. Next selected node is n,-. Our MCP/AM algorithm tries to find a processor
j for the selected node n,-. We need to distinguish two cases of the processor
selection step. If a processor exists, say j, which satisfy that SLj(i) is equal
to the earliest start time of the selected node m, our algorithm assigns the
selected node n,- to the processor j. Otherwise it assigns the selected node n,- to
a processor that allows the earliest execution (like the MCP algorithm).

The complexity of the MCP/AM algorithm is 0{v2\ogv) - the MCP algo-
rithm has the equal complexity.

4 Scheduling Example

In this section, we present an example to demonstrate the operation of the
proposed algorithm using the task graph shown in Fig. 3. The task graph was
drawn with the Graphlet Tool1.

The schedules of the ETF, MCP, and MCP/AM algorithms are shown in
Fig. 4. The entry and exit node are dummy. The MCP algorithm, as men-
tioned above, creates a list of edges and schedules the task graph onto the
multiprocessor machine with 2 processors (processing elements) in the order:
ni.722,n5.n3.n8.n7,n4,Tiii.nio,n9.Tie,ni2- The MCP/AM schedules the nodes
in- the same order as the MCP algorithm. The ETF algorithm schedules the
nodes in the order: rii,n-2-/n^.71.3,714,n-.rig.nio-nQ.ng.nn.n 12■

http://www.fmi. uni-passau. de/'Graphlet

50-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

The schedule lengths generated by the ETF, MCP, and MCP/AM algorithm,
are 67, 64, and 63 time units, respectively.

Fig. 3. An example of a task graph with 12 nodes

5 Results

In this section, we present the performance results of the MCP/AM algorithm
and compare it with the ETF and MCP algorithms.

We have implemented the scheduling algorithms on a SUN workstation. They
were evaluated by using a Prototype Standard Task Graph Set2. The Prototype
Standard Task Graph Set has 300 task graphs with 50 to 2500 tasks.

The results obtained in our experiments are shown in Table 2. The second
column indicates the name of the task graph instance. In next three columns
results of the scheduling length for the ETF, MCP, and MCP/AM algorithm,
respectively, are shown. The best schedule length value of all the algorithms
is boldface. In the last two columns the optimal scheduling length value and
difference between optimal scheduling length and the best schedule length value

2 http:/'/www..kasahara.elec.waseda.ac.jp/schedule/

■51

FEUP - Faaddade de En^enharia da Universidade do Porto

ETF

Proc 1 2 7 10 11

Proc2 5 3 4 8 6 9

MCP

Proc 1 2 7 4 10 6

Proc 2 5 3 8 11 9

MCP-ABS

Proc 1 2 8 11 6

Proc 2 5 3 7 4 10 9

Fig. 4. The schedules of the task graph on Fig. 3 generated by the ETF (schedule length
= 67 time units), MCP (schedule length = 64 time units) and MCP/AM algorithms
(schedule length = 63 time units).

of all the algorithms are shown, respectively. For some problem instances, the
optimal scheduling length is not known.

In order to rank all the algorithms in terms of the scheduling lengths, we made
a global comparison. We observed the number of times each algorithm performed
better, worse or the same compared to each of the other two algorithms. This
comparison is presented in Fig. 5. Here, three boxes have the left and the right
side. Each left side of the box compares two algorithms - the algorithm on the
left side and the algorithm on the top. Each left side of the box contains three
numbers preceded by ">", "<", and "=" signs which indicate the number of
times the algorithm on the left performed better, worse, or the same, respectively,
compared to the algorithm shown on the top. Each comparison is based on the
total of 300 task graphs.

Each right side of the box contains the number of times when one of algo-
rithms, the algorithm on the left side and the algorithm on the top, find the
optimal scheduling length. Optimal scheduling lengths are known for 255 of all
300 task graphs. They were computed on a parallel machine with 3000 processors
using ISH algorithm [11,10].

For example, the MCP/AM algorithm performed better than the MCP algo-
rithm in 246 cases, performed worse in 54 cases, and never performed the same.
The MCP/AM algorithm or the MCP algorithm or both of them found optimal
solution of the scheduling length in 156 cases. Similarly, the MCP algorithm
performed better than the ETF algorithm in 205 cases, performed worse in 51

•52-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Table 2. Schedule results of 40 task graph instances

| Graph ETF MCP MCP/AM Optimum Error

1 protoOOO.stg 537 537 537 537 0
2 protoOOl.stg 1191 1179 1178 1178 0
3 proto002.stg 357 363 347 341 6
4 proto003.stg 556 556 556 556 0
5 proto004.stg 267 238 222 — —
6 protoOOO.stg 758 749 742 742 0
7 proto006.stg 171 154 143 — —
8 proto007.stg 492 489 489 489 0
9 proto008.stg 578 582 572 571 1
10 proto009.stg 625 625 625 625 0
11 protoOlO.stg 351 338 334 334 0
12 protoOll.stg 513 496 485 — —
13 proto012.stg 1804 1795 1793 1793 0
14 proto013.stg 698 688 6°82 681 1
15 proto014.stg 523 520 511 — —
16 proto015.stg 513 513 494 491 3
17 proto016.stg 1016 1026 1007 — —
18 proto017.stg 487 475 463 — —
19 proto018.stg 704 706 701 700 1
20 proto019.stg 683 682 668 667 1
21 proto020.stg 1523 1514 1505 1504 1
22 proto021.stg 644 632 608 605 3
23 proto022.stg 1625 1620 1612 1609 3
24 proto023.stg 1619 1628 1614 1612 2
25 proto024.stg 1295 1291 ,1283 1281 2
26 proto025.stg 1193 1198 1192 1188 4
27 proto026.stg 1509 1502 1500 1500 0
28 proto027.stg 2003 2001 2001 2000 1
29 proto028.stg 1538 1506 1504 1504 0
30 proto029.stg 845 830 830 830 0
31 proto030.stg 1076 1057 1051 1051 0
32 proto031.stg 1383 1364 1356 — —
33 proto032.stg 1411 1396 1389 — —
34 proto033.stg 3690 3688 3685 3685 0
35 proto034.stg 1515 1517 1507 1507 0
36 proto035.stg 3852 3845 3842 3841 1
37 proto036.stg 987 974 966 966 0
38 proto037.stg 4090 4089 4087 4086 1
39 proto038.stg 1631 1621 1617 1616 1
40 proto039.stg 3167 3162 3159 3159 0

■53-

FEUP - Faculdade de Engenharia da Universidade do Porto

(MCP) (ETF) TALL)

> 246 ;

<0 '156

= 54 i

1

>264|

-<1 1156
i

= 35 i

> 510

< 1
= 89

(MCP/AM)—

i

>205|

< 51 i 50

= 44 i

>205

<297
= 98

I IVlV^l i

>52

I ETF r~
= 7?

Fig. 5. A global comparison of the three algorithms in terms of better, worse, and
equal performance.

cases, and performed the same in 44 cases. Algorithms combined found optimal
scheduling length in 50 cases.

An additional box for each algorithm compares that algorithm with all other
algorithms combined.

The experimental results of the quality of the schedule length are summarized
in Table 3. The MCP/AM algorithm found the optimal schedule length in 156
cases, and the solution within 5% in 98 cases.

We can notice that the proposed MCP/AM algorithm outperformed two
other well known algorithms. Based on these experiments, we can order all three
algorithms in the following order: MCP/AM, MCP, and ETF. The same order
of the MCP and ETF algorithms can be found in [14], where communications
are assumed among the tasks.

6 Conclusion and Future Work

This paper presents a task scheduling algorithm which can schedule directed
acyclic graphs (DAGs) with a complexity of 0{v2 logu), where v is the number
of tasks in the DAG.

The performance of the algorithm has been observed by comparing it with
other existing bounded number of processor (BNP) scheduling algorithms in
terms of the schedule length.

-54-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Table 3. Schedule lengths with respect to optimal solutions

Quality of the solution (Error) ETF MCP MCP/AM
1 0% (optimum) 33 50 156
2 <5% 178 182 98
3 5% - 10% 30 21 1
4 10% - 15% 11 2 0
5 15% - 20% 3 0 0
6 > 20% 0 0 0
7 Optimum not known 45 45 45

Total 300 300 300

The algorithm schedules the tasks and is suitable for graphs with arbitrary
computation and without communication costs, and is applicable to systems
with homogeneous fully connected processors.

In the future we intent to extend our algorithm to schedule both the tasks
and messages for task graphs with arbitrary computation and communication
costs, and it will be applicable to systems with arbitrary network topologies
using homogeneous or heterogeneous processors.

Acknowledgments

This research was supported by the Ministry of Science and Technology, Republic

of Slovenia under contact number J2-7502-796.

References

1. Thomas L. Adam, K. M. Chandy, and J. R. Dickson. A comparison of list schedules
for parallel processing systems. Communications of the ACM, 17(12):685-690.
December 1974.

2. I. Ahmad and Y.-K. Kwok. On parallelizing the multiprocessor scheduling problem.
IEEETPDS: IEEE Transactions on Parallel and Distributed Systems, 10, 1999.

3. Janez Brest, Viljem Zumer, and Milan Ojstersek. Dynamic scheduling on a network
heterogeneous computer system. In 4th International ACPC Conference Includ-
ing Special Tracks on Parallel Numerics (ParNum'99) and Parallel Computing in
Image Processing, Video Processing, and Multimedia; LNCS 1557, pages 584-585,
Salzburg, Austria, 1999.

4. D. Darbha and D. P. Agrawal. Optimal scheduling algorithm for distributed-
memory machines. IEEETPDS: IEEE Transactions on Parallel and Distributed
Systems, 9, 1998.

5. Mary. M. Eshagian, editor. Heterogeneous Computing. Artech House, Inc., Nor-,
wood, MA 02062, ISBN 0-89006-552-7, 1996.

6. Ian Foster. Designing and Building Parallel Programs. Addison-Wesley, ISBN
0-201-57594-9, 1995.

■55-

FEUP - Faculdade de Engenharia da Universidade do Porto

7. Emile Haddan. Load Balancing and Scheduling in Network Heterogeneous Com-
puting. In Mary. M. Eshagian, editor, Heterogeneous Computing, pages 224-276.
Norwood, MA 02062, ISBN 0-89006-552-7, 1996. Artech House, Inc.

8. Jing Jang Hwang, Yuan-Chieh Chow, Frank D. Anger, and Chung-Yee Lee.
Scheduling precedence graphs in systems with interprocessor communication times.
SIAM Journal on Computing, 18(2):244-257, April 1989.

9. K. Hwang and Z. Xu. Advanced Computer Architecture: Technology, Architecture,
Programming. McGraw-Hill, New York, 1998.

10. H. Kasahara. H. Honda, and S. Narita. Parallel processing of near fine grain tasks
using static scheduling on OSCAR (optimally scheduled advanced multiprocessor).
In IEEE, editor, Proceedings, Supercomputing '90: November 12-16, 1990, New
York Hilton at Rockefeller Center, New York, New York, pages 856-864, 1109
Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1990. IEEE Computer
Society Press.

11. H. Kasahara and S. Narita. Practical multiprocessor scheduling algorithms for
efficient parallel processing. IEEE Trans, on Computers, 33(11):1023, November
1984.

12. Y.-K. Kwok and I. Ahmad. FASTEST: A practical low-complexity algorithm for
compile-time assignment of parallel programs to multiprocessors. IEEE Transac-
tions on Parallel and Distributed Systems, 10(2):147-159, February 1999.

13. Y.-K. Kwok and I. Ahmad. Parallel program scheduling technique. In Buyya
Raykumar, editor, High Performance Cluster Computing: Architectures and Sys-
tems. Prentice Hall - PTR, N.J, USA, 1999.

14. Yu-Kwong Kwok and Ishfaq Ahmad. Dynamic critical-path scheduling: An effec-
tive technique for allocating task graphs to multiprocessors:. IEEE Transactions
on Parallel and Distributed Systems, 7(5):506-521, May 1996.

15. M. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill, 1994.
16. Buyya Raykumar, editor. High Performance Cluster Computing: Architectures and

Systems. Prentice Hall - PTR, NJ, USA, 1999.
17. Barry Wilkinson and Michael Allen. Parallel Programming: Techniques and Ap-

plications Using Networked Workstations and Parallel Computers. Prentice-Hall,
Englewood Cliffs, NJ 07632, USA, 1998.

18. Min-You Wu and Daniel D. Gajski. Hypertool: A programming aid for message-
passing systems. IEEE Transactions on Parallel and Distributed Systems, 1(3):330-
343. July 1990.

■56-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

A New Buffer Management Scheme for Sequential and
Looping Reference Pattern Applications*

Jun-Young Cho, Gyeong-Hun Kim, Hong-Kyu Kang and Myong-Soon Park

Dept. of Computer Science & Engineering, Korea University,
Sungbuk-ku, Seoul 136-701, Korea

(jycho, kgh, hkkang, myongsp}@iLab.korea.ac.kr

Abstract. MRU replacement policy is frequently used to improve the
performance of buffer caching for sequential and looping pattern applications.
On the way of implementing MRU on Linux, we observed that MRU shows
lower response time by up to 100% compared to LRU. Indirect blocks, which
are used in the file structure of Unix family operating systems for large-size
file, are the main reason of decreasing performance. Indirect blocks are fetched
but immediately replaced by MRU replacement policy, even those will be soon
and frequently needed again. Based on this observation, we propose a buffer
replacement policy named 'LMRU'. LMRU maintains frequently-used blocks
such as indirect blocks in the cache, even it manages all other blocks on buffer
cache with MRU. We have designed and implemented it in a Linux kernel.
LMRU improves the response time by up to 70% compared to LRU and 163%
compared to M RU.

1. Introduction

Rapid improvements in processor and memory performance have created a
situation in which the file system I/O has become a major bottleneck for system
performanceflO]. To solve this problem, a lot of researches have been done in the
areas of virtual memory, file system and I/O system. The management of the buffer
cache is one of these research areas.

Since the memory allocated to buffer cache is limited, a block should be replaced
to store a new data block. A buffer replacement policy is the problem of deciding
which memory block to replace when making room for a new one. An optimal buffer
replacement algorithm is one that incurs the lowest number of cache misses.
However, this algorithm requires future knowledge of the reference sequence, and it
is not realizable in general. As a result, storage systems employ a number of buffer
replacement algorithms, which attempt to approximate the performance behavior of
the optimal buffer replacement algorithm[ll]. LRU algorithm is one of the most
popular replacement policies, particularly in commercial implementations. It is used

+ This research was supported by KOSEF under grant No. 96-0101-04-01-3

-57-

FEUP - Faculdade de Engenharia da Universidade do Porto

widely in database buffer management, virtual-memory management, file system and
I/O caches. This policy exploits the principle of temporal locality and evicts the block
used least in the recent past on the assumption that it will not be used in the near
future. However it is well known that an application which shows large sequential or
looping reference pattern is not fit to use LRU. In prior works, MRU is used to
manage such patterns. MRU is the most appropriate policy to manage such
patterns[l][2][3][4].

To effectively support a large sequential or looping reference patterns of some
applications, we implemented MRU in Linux buffer cache. When we were testing our
implementation, we observed that the same block was fetched and replaced
repeatedly. It causes lower performance even though the application's reference
pattern is suitable to MRU. We found that indirect blocks, which are used in file
system of Unix family operating systems for large size file, are the main reason of
decreasing performance. When an application access a data block, larger than 12
block, it must refer the block via indirect block, as a result indirect block is fetched
and replaced frequently when we applied MRU policy.

LMRU solves this problem. It maintains frequently-used blocks such as indirect
blocks in the buffer cache, even it manages all other blocks on the buffer cache with
MRU. LMRU improves the response time by up to 70% compared to LRU and 163%
compared to MRU.

In Section 2, we discuss background. In Section 3, we describe the indirect block in
the Unix file system. In Section 4, we propose a new buffer cache management policy
for sequential or looping reference pattern application. In Section 5, we analysis an
implementation and the performance of the LMRU. Finally, we present our
conclusions in Section 6.

2. Background

In this Section we introduce the buffer cache management scheme, present an
operation and analysis of MRU and look into data access pattern.

2.1 Buffer Cache

The block-device interface uses the buffer cache to minimize the number of I/O
requests that require an I/O operation, and to synchronize with file system operations
on the same device[8] . When a process tries to read data from the disk, the OS kernel
gives the request to the buffer cache module. The buffer cache searches its buffer pool
to see if the requested data is in the pool. If valid data is found, the data is returned to
process without accessing the disks. If there is no buffer related to the requested data,
new free buffer is allocated to store for the data from free list.

If there is no free buffer to use, some of buffers should be replaced. When buffer
cache module select buffers to be flushed, it is well known that LRU policy works
well for general cases. Traditional OS uses LRU replacement policy.

-58-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

2.2 MRU (Most Recently Used)

MRU keeps track of the last time each block was accessed and replaces the block
that has been accessed in the nearest time. Among all buffer replacement policies, it
has been known that for looping reference, a MRU replacement requires the fewest
number of faults[4]. So in previous works, MRU is used to manage large sequential or
looping reference pattern [1][2][3][4]. [3] proposed SEQ. SEQ normally performs
LRU replacement. When SEQ detects sequential access pattern, SEQ performs MRU
replacement on the sequence to prevent LRU list flooding. [1] [2] [4]applies MRU as a
buffer replacement policy to manage long sequential or looping reference patterns. In
this paper we analyze what parameter has influence on the performance of the system
when we apply MRU. as a buffer management policy. Let the size of buffer cache be
S, loop length L, the number of loop iteration K(where S>L, K>0).

SS S S S S SS SS S
 ■»- | a b o d | abcd||abccl||abcd a b c d |

c d
b b b

a a a a

abed abcdabcd
d a a c ddbccabb
bdda ccdbbcaa

abed
d aac
bdda

s s s SS s*s SSV*/ SS
| ab cd|! ab cd abcd||abcd|jabcdj
abc d abed
ddb c e abb
c cdbb eaa

abed abc d abed
d aac ddb c c abb
b dda c cdb b eaa

Fig. 1. An Example of mini-cycle when we manage looping data as MRU.

As figure 1 shows, when we manage MRU for sequential and looping reference
patterns, it occurs in a periodic pattern. The length of a period is L*(L-1). We will call
the period mini-cycle. When we observe the number of hits in a mini-cycle, there are
S or S-l hits occurring. So the number of hits in the mini-cycle are as follows.

The number of hits in a mini-cycle

-Sx(S-l)+(S-l)x(L-S)=(S-l)xL (1)

Let the number of mini-cycles be M. Then M can be represented as M = L(K-1)/(L
-1)J. Let R is the value of (K-l) modulo (L-l) then the total number of hit is as
follows.

Numbeiofhits=
{(S-l)xL}xM + SxÄ ifÄ<(S-l)

{(S-l)xL}xM+(S-l)x(7? + l) if^>(S-l)

(2)

Equation (2) shows us that the performance of the system has related with the size
of buffer cache, loop length and the number of iteration when we apply MRU as a
buffer cache management scheme.

2.3 Data Access Pattern

Recent research has shown that most applications show various block reference
patterns. Applications for continuous media generally show a sequential or periodic

-59-

FEUP - Faculdade de Engenharia da Universidade do Porto

reference pattern[5]. A large class of scientific applications show a looping reference
pattern[6]. Database applications show a irregular block reference pattern[7]. Based
on the previous research, we classify the block reference pattern as follows.

• Sequential reference: A sequential reference pattern has the property that all data
blocks are referenced one after another.

• Looping reference: A looping reference pattern has the property that sequential
reference is performed repeatedly.

• Irregular reference: An irregular reference pattern is not equal to reference
probability among all blocks.

3. Indirect Block in the Unix File System

In Unix, the information required for management is kept strictly apart from the
data collected in a separate inode structure for each file. Inode contains information
about the file size, its location, owner of the file, time of creation, and so on. In
addition to descriptive information about the file, the inode contains the pointer to a
block of pointers to additional data blocks. BSD and Linux keep 15 pointers of the
inode block in the file's inode block[8]. The first 12 of these pointers point to direct
blocks. Thus, the data for small (no more than 12 blocks) files do not need a separate
index block. The next three pointers point to indirect blocks. The first indirect block is
an index block, containing not data but rather the pointers of blocks that contain data.
Then there is a double indirect block pointer, which contains the pointer of a block
that contains the pointers of blocks that contain pointers to the actual data blocks. The
last pointer contains the pointer of a triple indirect block. Since an application
accesses a data block it must access data block via indirect block, an indirect block is
fetched and replaced if we use buffer cache management policy as MRU.

Figure 2 shows a referenced block in the buffer cache when an application reads a
file sequentially in Linux. It shows that data block is referenced via indirect block.

Fig.

0 50CO 10000

Virtual Time

2. Block reference pattern as we read a file sequentially

15000

-60-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

In this paper, we analyze how many indirect blocks are referenced as we read a file
sequentially in order to know what parameters are related to indirect blocks. Let file
size be FS, block size BS, the size of pointer K. Then we can represent the number of
blocks N in a file as N = TFS/BSI and the number of pointers P in a block as
P=f BS/KI. We assume that an inode can access data block directly up to D'h block and
an inode can support triple indirect block. Then the number of referenced indirect
blocks is as follows.

The number of referenced indirect blocks

0 0<N<D 1 (3)
N-D D<N<(D + P)

2N-P-2D (D + P)<N<(D+P2 + P)

3N - 2P2 - 2P - 3D (D + P2 + P) < N < (D + P" + P2 + P)

Equation (3) shows us that the number of indirect blocks relates to the number of
blocks in a file. As a file size gets larger, indirect blocks are referenced more and
more.

4. LMRU Algorithm

When we apply MRU in large sequential or looping reference pattern, the indirect
block is fetched and replaced frequently. To solve this problem we propose LMRU.
LMRU is designed to consider characteristics of indirect block and data block in large
sequential and looping reference patterns. To manage such patterns, we have two
regions IR(region for filtering indirect block) and DR(region for managing data
block). Each region is composed of list structure. A block which is located at the head
of the list has the highest priority to replace and tail of the list has the lowest priority
to replace. Every block is listed in hash table so it is possible to 0(1) time search. The
LMRU has the following data structure.

• IR: When a block hits in IR, then the block moves to the tail of the list. When there
is no free buffer for assigning to a new block, LMRU replaces a block at the head
of the list and then puts the block at the tail of the list.

• DR: When a block hits in DR then the block moves to the head of the list. When
there is no free buffer for assigning to a new block, LMRU replaces a block at the
head of the list and then puts the block at the head of the list.

LMRU has a two-tiered structure. When a block is fetched from a disk, LMRU
puts it into IR.When a block is no longer needed in IR, then the block moves into DR.
Figure 3 depicts the logical flow of LMRU.

-61-

FEUP - Faculdade de Engenharia da Universidade do Porto

Least
Recently

Used

hits

DR

" hits
input

Most
recently

used
IR

Least
Recently

Used

Most
Recently

Used' move

release

Fig. 3. The logical flow of LMRU

IR is designed to maintain frequently-used blocks such as indirect blocks and DR
is designed to manage data block. So LMRU is a structure to cache indirect block and
manage data as MRU.

5. Performance Measurements

We present the results of experiments. We used Linux-2.0.32 on a 200MHZ Intel
Pentium PC with 64MB RAM and 5GB Quantum Fireball hard disk. The size of
Linux buffer cache grows dynamically. We fix the size of buffer cache in order to test
the effect of various replacement policies as we increase the size of buffer cache.

We experimented to decide the size of IR and then compare the performance of
various applications under LMRU, LRU and MRU. The application traces are used in

[1][2].

5.1 File Access Traces

Applications we used are :
• Dinero: Dinero is a cache simulator. Dinero reads a trace file sequentially and

repeatedly.
• Cscope: Cscope is a C-source examination tool. It builds a database of all source

files, then uses the database to answer queries about the program.
• Glimpse: Glimpse is a text information retrieval system. It uses two-level

searching. First it searches the index for a list of all blocks sequentially that may
contain a match to the query. Then, it searches each such block separately.

-62-

VECPAR '2000 - 4th International Meeting on Vector arid Parallel Processing

• Sort: Sort is an external sorting utility in Unix. We used a 17MB text file as input,
and sorted numerically on the first field.

The applications that we used are summarized in Tablel.

Program Description
The size of
input data

Access pattern

Dinero Cache simulator 8M Sequential, Looping
Cscope C examination tool 18M Sequential, Looping

Glimpse
Text information

retrieval tool
40M

Sequential, irregular

Sort Unix sort utility 17M Sequential
Table 1. Characteristics of the applications

5.2 Experiments Results

We experimented to decide the size of IR. Table2 shows the elapsed time of
Dinero, Glimpse, Cscope and Sort as we vary the size of IR and set DR to 6MB.

AppMR size 0 block 1 block 2 block 3 block 4 block 5 block
Dinero 20.719 20.12 16.204 15.204 12.109 12.109
Cscope 14.1644 13.712 12.325 11.325 8.509 8.509
Glimpse 30.1005 29.833 27.633 25.633 25.49 25.49

Sort 19.967 19.123 17.83 16.83 15.855 15.885
Table 2. The elapsed time(second) of LMRU with varying the size of IR.

Table2 shows the elapsed time of LMRU does not improve even if the size of IR is
over 4 blocks. The reason is that there can appear three levels of indirect blocks
before reaching the data block in Linux. When we set the size of IR to 0 block, the
elapsed time is same to MRU. That is to say when the size of IR is 0, LMRU works as
MRU. Based on the above experiments, we set the size of IR to 4 blocks. The sum of
the size of IR and DR is the size of buffer cache. Since the size of IR is very small
compared to DR, the size of buffer cache is nearly the size of DR.

Figure 4 shows the effects of varying the size of buffer cache on the number of
elapsed time under different buffer replacement. When we use LRU we can observe
that the elapsed time of Dinero, Cscope and Sort has not changed even if we vary the
size of buffer cache. That is to say, for large sequential or looping reference pattern
applications are not likely to benefit from LRU although buffer cache size is
increasing. But in MRU and LMRU, the elapsed time of the application is decreasing
as the size of buffer cache is increasing because the resident block of the buffer cache
may hit. In the case of Glimpse, since it has an irregular and sequential reference
pattern, when we apply LRU, MRU and LMRU to it, the elapsed time of the
application is decreasing as we increase the size of buffer cache. As figure 4 shows,
the performance of MRU is low compared to LRU and LMRU. The reason is that the
indirect block is fetched and replaced frequently.

-63-

FEUP - Faculdade de Engenharia da Universidade do Porto

<M &l\ M

Th39zedBJa-GdT=

"IheRaforarcefcrDrHC

30

,o20
(D 0)

aoj10

^P 0 An .rtirti.
GLRJ
■ fvRJ
aUvRJ

4v1 8vl a/I

Tre3zedEufferQcn3

The Fferfcmare fcr Cfeccpe

40 r

SI 20
MO

0

aiHj
■ NftJ
OUvRJ

<M a*
The Szecf Buffer Cache

The pstmare fcr QirrfEe

avi

25
20

-J5

IJ10
ll 5

0
4M 6M

TteSizeofEufferCk^s

The Performance fa Sort

Fig. 4. Performance for various applications as changing buffer cache size and
buffer replacement policies

In LMRU, since the replacement policy has a structure to maintain an indirect
block and manage data block as MRU, for sequential and looping applications,
LMRU outperformed LRU and MRU.

5.3 The Analysis and Experiments on the System Performance by Indirect Block

As we've shown in figure 4 of section 5.2, when we apply MRU to sequential or
looping reference pattern application, it is very important to maintain indirect block so
as not to degrade system performance. In this section, we present the experimentation
and analysis on the influence of indirect block to the system performance.

Figure 5 shows the influence of indirect block to the system on the various
applications. We used the hit ratio as a performance metrics. Since the referenced
blocks to a buffer cache include not only data blocks but also indirect blocks, we
represent the hit ratio as equation (4).

Hit ratio = -
The sum of hit data blocks and indirect bocks

The sum of requested data blocks and indirect bocks

In LMRU, the number of hit indirect blocks is represented as equation (5)

The numberof hit indirect block
=The numberof requestedindirect blocks

- The numberof cold miss of indirect blocks

(4)

(5)

-64-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

The effect of indirect block to the whole system is a ratio of the sum of application
requested data block and indirect block to the number of hits on indirect block. We
can drive the equation (6) using equation (4) and (5). Equation (6) shows an influence
of indirect block to the system

An influence of indirect block on the system

The number of hits on indirectblock

(6)

The sum of requsted block and indirect block

Using equation (6) we have tested the influence of indirect block on the Linux
kernel.

o _o

1
0.9
0.8
0.7
0.6

D inero Cscope Glimpse Sort
Application

Fig. 5. Influence of indirect block on the system performances

We can observe that indirect blocks influence upon the system performance by
49.8% up to 62%. Sequential or looping reference pattern application has much
influence on the system performance compared to irregular reference pattern
application.

We can analyze the influence of indirect block on the system. Using equation (3)
and (6) we can represent an effect of indirect block on the system as equation (7)(8)
and (9). Equations can be classified by three cases according to N.

Case 1. D< N < (D+P)

N-D + l

2N-D

(7)

Case 2. (D+P) < N < (D+P+P-)

2N-P-2D-2-
N-{D + P) (8)

3N-P-2D

-65-

FEUP - Faculdade de Enienharia da Universidade do Porto

Case 3. (D+P+P2)< N < (D+P+P'+P)

3/V-2P2 -3P-3D-3-
N-{D + P+P-)

P
N-(D+P+P~) (9)

4N-2P1 -2P-3D

Applications that we used are the case of equation (8). In Linux, the size of a block
is 1024 bytes and size of pointer is 4 bytes. So there are 256 pointers in a block, an
indirect block can point 256 data blocks. When we apply these parameters to these
equations, we can know that the minimum influence of indirect block on the system is
49.7% and maximum is 64.2%. This includes the result of figure (5). So we can know
that the result of figure (5) is valid and it is very important to maintain indirect block,
so as not to degrade system performance, when we apply MRU as a buffer cache
management scheme.

6. Conclusion

This paper presents the results of a buffer cache management scheme for large
sequential, looping and irregular patterns. When we apply MRU to large sequential or
looping data it needs a structure to maintain indirect block so as not to fetch and
replace frequently. To solve the problem of MRU we have designed LMRU to cache
indirect block and manage data blocks as in MRU. LMRU can maintain indirect block
in the buffer cache using only four blocks. LMRU improves the response time by up
to 70% compared to LRU and 163% to MRU. LMRU can be used with application
controlled file caching, Open Implementation method and DEAR scheme[l][2][12].

References

1. P.Cao, E.W.Feiten, and K.Li. Application-Controlled File Caching Policies. In
Proceedings of the USENIX Summer 1994 Technical Conference.

2. J.Choi, S.H.Noh, S.L.Min, Y.Cho. An Implementation Study of a Detection-based
Adaptive Block Replacement Scheme. In Proceedings of 1999 USENIX Annual
Technical Conference, June 6-11, 1999.

3. G.Glass, P.Cao. Adaptive Page Replacement Based on Memory Reference Behavior. In
Proceedings of SIGMETRICS'97, pp. 115-126, June 1997.

4. C.Faloutsos, R.Ng and T.Sellis. Flexible and Adaptable Buffer Management Techniques
for Database Management Systems. In IEEE Transactions on Computers, 44(4): 546-
560,April 1995.

5. P.J.Sheony,P.Goyal,S.S.Rao, and H.M.Vin. Simpony: An Integrated Multimedia File
System. In Proceedings of Multimedia Computing and Networking (MMCN) Conference,
pp 124-138,1998.

6. Barbara K.. Pasquale and George C.Polyzos. A Static Analysis of I/O Characteristics of
Scientific'Applications in a Production Workload. In Proceedings of Supercomputing '93,
pp 388-397,1993.

7. A.Dan , P.S.Yu, and J-Y Chung. Characterization of Database Access Pattern for Analytic
Prediction of Buffer Hit Probability. VLDB Journel,4(l):127-154, January 1995.

-66-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

8. M.J.Bach. The Design of the UNIX Operating System.Prentice-Hall, 1986.
9. M.Beck,H.Bohme,M.Dziadzka,U.K.unitz,R.Magnus,D.VerWorner. Linux Kernel

Internals, Addison Wesley, 1997.
10. AJ.Smith. Disk cache-miss ratio analysis and design considerations, ACM Transactions

on Computer Systems, 3(3): 161-203, August 1985
11. B.Ozden, R.Rastogi,A.Siberschatz Buffer Replacement Algorithms for Multimedia

Storage Systems. In Proceedings of IEEE International Conference on Multimedia
Computing Systems 1996

12. Gregor Kiczales, "Beyond the Black Box: Open Implementation", IEEE Software
Engineering, 13(1):8-11,1996

-67-

Parallel Architecture for Natural Language Processing

Ricardo Annes
F ACI - PUCRS Campus II

BR472Km7-Sala24
97.510-460 - Uruguaiana -RS - Brasil

phone 55 55 413 15 15 fax 55 55 413 12 80
annes (fl.pucrs.campus2.br

ABSTRACT

This work presents a study on the applicability of the Multiagent paradigm to

the part-of-speech tagging problem. The work is related to Computational Linguistics and

Distributed Artificial Intelligence in order to propose a non sequential approach to the part-

of-speech tagging problem. Natural Language Processing (NLP), and more specifically

Corpus-based Processing, study linguistic phenomena under the point of view of Computer

Science. NLP has given a significant contribution to man-machine communicatioa

Multiagents Systems (MAS) is a well-established concept in the area of Distributed

Artificial Intelligence. MAS's has been thoroughly studied towards application in NLP. h.

this work we propose a distributed architecture in which every agents acts on a specific

style corpus. The proposed architecture has been implemented and it is being currently

tested with an initial set of texts.

1 Introduction
The actual phase of Computer Science development challenges us to

diminish the interaction problems between computers and users. The Artificial
Intelligence and the Natural Language Processing (NLP) are source of research
looking for different ways of minimising these problems.

The Processing based on Corpus is an approach which uses heuristics for
the abstraction of linguistic knowledge and also uses stochastic techniques on
large volumes of textual data (written or spoken) available for computer science
processing, this makes learning by means of natural examples possible on the
target language.

The treatment given to the textual data basis which supports the heap of the
Human knowledge, such as those expressed in natural language, the information
recovered, the Man-Machine interfaces, automatic translations, language
comprehension and generation, are detenninants to the NLP evolution.

-69-

This work has themain objective of presenting an investigation made about
the use of Multiagent model on the Natural Language Processing through a
distributed architecture of tag agents which can maximise the results of sequential
approaches.

The linguistic knowledge taken from a corpus can be: specific to this
corpus, generic to a group which corpora with texts of similar origin or of validity
to all the language studied/treated. The processing of various corpora can give
information about the specificity'generality levels of parts of speech.

Our proposal is an architecture of multiagent system to tag texts where
multiple tag agents exchange information during the training and tagging phases.
This architecture is made by a set of specialised tag on specific domains (or text
styles) and of one generic tag in order to avoid redundancies.

The expected advantages of this approach are: increase of precision of
tagging with a minor set of examples for the training according to the focus on
specific domains of texts styles and a better performance on training according to
the use of parallelism.

On section 2 we present the basic concepts of the three areas studied:
Natural Language Processing, Processing based on corpus and the problem of
corpus tag. On section 3 we present the Architecture of our system, the proposed
agents model and the co-operation layer between the society agents. On section 4
we present the aspects of the system prototype implementation proposed and on
section 5 we present our conclusion and proposes for future works.

2 BASIC CONCEPTS
2.1 Natural Language Processing

The Natural Language Processing (NLP) [ALLE94], Artificial Intelligence
sub-area, means two areas with different focus and similar problems put together.
Computer Science needs more natural interfaces, but on the other hand Linguistics
needs computer science methods to develop its theories.

The challenges are not few, the concepts are not unified yet, but the
development have been noticed. The textual data basis treatment which supports
the heap of Human knowledge such as those expressed in natural language, the
information recovered, the Man-Machine interfaces, automatic translations,
language comprehension and generation, are determinants to the NLP evolution.

We must mention, at this point, that NLP treats language only as a
symbolic language representation, which involves more meaningful factors such
as: habits, culture, gesmres, knowledge and believes.

Although there are many successful works on different areas of NLP
(automatic translation, texts correction, bibliographic consults, representation
formalisms, etc.) interpretation and automatic processing of knowledge available
on natural language still poses problems without a complete answer whenever we
try to apply to all systems a meaningful and genetic form.

The high level of inter-relationship among the linguistics domain and the
tentative of manipulating natural language on an unrestricted and unlimited form
contribute to the complexity of this area.

-70-

2.2 Corpus-based processing
A corpus is a collection of patterns (pieces, fragments) language which are

selected and ordered according to a explicit linguistic criteria for being used as a
sample of language. The linguistic criteria can be extern (when related to the
participants, the occasion, the social class or the communicative function of
language patterns) or intern (when related to the occurrence of standard language
inside the language patterns.

The use of corpus is made for the study of a language by the knowledge of
the samples used naturally on the target language.

The advantages of the corpora are: accessibility, velocity and
exactness, fidelity.

The corpora can basically be plain or annotated On the plain corpus there
is no information about the text, on the annotated we could add information such
as: lexical category, syntactic structure, speech information, etc. The annotated
corpora can also be called tagged.

It has been used the heuristic employment for the choice of alternatives to
the syntactic analysis. One of these approaches, corpus-based processing, uses
techniques based on the Probability Theory.

The approaches based on statistics were also important because it promotes
the ability of effective parameters learning from the corpus processing. These
algorithms start with an initial estimate of probabilities and after then the corpus is
processed in order to calculate the better estimate, repeating the process until no
option of a better answer could be given. This technique guarantees the
convergence, although it could not discover an excellent value.

The approach basically based on knowledge emulate knowledge of human
speech using techniques which comes from Specialist Systems. Systems based
exclusively on rules have got a limited success. Many of the well succeeded
systems use the stochastic approach. [CHUR93]

2.3 Tagging
Based on a great amount of marked texts (corpus)

[CHUR93;CHAR93;MARC93] may efforts have been made in order to create
programs which execute this task (tagging).

Tagging or tagging (part-ot-speech tagging) is a process used to mark parts
of speech at every word on a corpus. This is a very important task on the modern
Natural Language Processing and in information retrieval. Tagging is made based
on the context on which the word occurred in the sentence. Some words, when
considered out of context, present more than one speech part (lexical ambiguity).

If we think that a certain word can be classified with more than one tag (for
example: the words book and love can be either a noun or a verb), we can abstract
the concept of class of ambiguity. The class noun_verb is a set of all words which
can be noun or verb.

The advantage of using this concept is that we can use the smallest number
of parameters to be estimated on the model used. At the Brown corpus from 50
thousand words only 4 hundred ambiguity classes are used.

Generally tags are constructed according to two main approaches:
- Statistical methods (based on probabilistic models) and

-71-

- Rule-based models
Statistical taggers analyse the texts according to an empirical focus,

independent from domain or from language, through automatic construction
techniques from inferred rules based on a training corpus which do not require
human supervision. The tagger acquires his knowledge based on corpura
established patteras [MERI94].

The taggers are created by linguists according to linguistics rulers[BRIL93;
VILL95] based on language models and syntagmas, creating a grammar.

This is a manual work which depends on the domain of a specific language
what makes it an expensive work. Generally a symbolic program based on rules is
used to construct the tagger.

A mixed approach [BRIL92] [BRIL93] describes the tagger based on rules
taken from statistical processes. The system is composed by two taggers, the first
tagger creates a dictionary with the most probable category for each word,
without considering sentential context. For unknown words there is a high level
set of rules, such as "words starting with capital letters are common nouns",
"words ending on 'ing' are verbs". The second tagger infers rules automatically
from the training corpus marked context comparing the tagged corpus with the
results of the first tagger.

In both approaches, the size of the training corpus must be quite large to
achieve a reasonable precision.

This precision is calculated by two different ways:
- quantity of correctly tagged words divided by the total quantity of corpus

words or
- quantity of correctly tagged sentences divided by the total corpus

sentences.
We can notice that the second criteria is much more rigid than the first one.
The statistical tagger work can be divided into 3 stages: training, test

(validation) and tagging.
During the training the system 'learns' with the tagged corpus. Precision

of statistical taggers on the tagged texts is proportional to the number of entry
examples during the training stage (tagged corpus) and dependent to the corpus
type. Whenever the entry increases the amount of information on the tagger also
increases what promotes less efficiency.

The formalism generally used on the implementation of the training phase
is the HMM (hidden Markov Model) [CHAR93]. This model is a machine of
finite state which makes possible to regulate transitions among states and to
control the emission of the exit signal. This model presents the advantage of
executing learning in an automatic way, independent of domain, set of tags or
language.

The n-grams [MERI94] uses the concept of context or neighbourhood to
solve the ambiguity problem. The model n-gram defines that we should analyse n-
1 neighbour word for each word in a sentence. Generally the most used models are
bigrams which analyse the precedent word and trigrams which analyse the two
precedent words. The more word analysed the most precise the results and higher
the cost of processing.

-72-

During the training process the tagger receives the tagged corpus and
estimates the HMM parameters through algorithms of Relative Frequency and
Forward-Backward [CHAR93].

After constructing the HMM and estimating its parameters, the tagger is
ready to execute the tagging of words and sentences. During the test stage texts
with known tagging are processed in order to analyse the results and if necessary
to make the appropriate adjustments.

During the tagging process the Viterbi algorithm is used in order to
discover the most probable sequence of tags for a certain sentence. [CHAR93].

3 PROPOSED ARCHITECTURE
3.1 Multiagent approach motivation

The linguistic knowledge abstracted from a corpus can be: specific to this
corpus, generic to a group of corpora with texts from similar origin or of validity
to all treated, language. Various corpora processing can bring information about
the levels of speciflcity/generality of grammatical categories abstracted.

On the approaches studied (statistical methods and based on rules), the size
of the training corpus needs to be sufficiently great to present a reasonable
precision.

The use of only one training corpus implies on the lose of dependable
domain information - some words can present specific uses depending on the text
type or style.

Such considerations motivate the application of distributed processing on
corpora of different text style. A natural form of making this application possible
is the use fo Multiagent Systems [WERN92].

So, we propose an architecture of multiagent system to tag texts, where
multiple tagger agents exchange information during the training and tagging
stages. This architecture is composed by a set of taggers specialised on specific
domains (or text styles) and a generic tagger to avoid redundancies:

The advantages expected from this approach is: a) tagging precision
increase with a set of less examples for training; b) higher processing velocity
during the training stage because of the architecture parallelism and c) better
tagging performance because of the models separation as we can see on the next
sections.

3.2 The society architecture
The society architecture is made by a generic agent and a set of specific

agents [ANNE98]. The process is divided into two stages: Training and Tagging.
During the Training stage the systan acquires, through the corpora of different
styles, the necessary knowledge to the Tagging stage. The Tagging stage is less
complex than the Training stage as we can see below.

During the tagging stage (picture 3.1) the sentence to be tagged and its text
style are passed to the generic text style). After this stage the sentence can be sent
to the correspondent agent of a text style and the tagging will be completed, agent
which makes a preliminary tagging, according to its knowledge (morph-syntactic
categories common to any

-73-

Picture 3.1 Tagging system stage

3.3 Training stage
During the training stage each specific agent takes as entry a tagged corpus

in order to acquire knowledge about the morph-syntactic category of each word of
these corpora.

The agents knowledge is moulded on HMM and the protocols of
communication between them had been formalised in a language based on KQML
(section 4).

During the system training stage (picture 3.2), the agents acquire their
knowledge to apply on the tagging stage. To each specific agent one corpus of a
certain text style is submitted. On a co-operative way. interacting with the other
society agents, each agent creates its HMM using only specific linguistic patterns
of the processing style. It is the generic agent work to create HMM with common
patterns to all style texts taken into account.

3.4 Agents model
According to Demazeau's generic agent description [DEMA90], the agents

of our architecture present the following characteristics:
The agent's knowledge is represented by Markov's Models which are

acquired, mainly at the training stage, from the specific corpora and the generic
agent is acquired through the interaction with the other agents.

It has been chosen the Statistical Tagging developed by New Lisbon
University (NLU) described by [VILL95], that was made agent to become a
society member through a co-operation layer which makes possible to exchange
information at the training stage.

-74-

Picture 3.2 System Training Stage

NLU statistical tagging is basically compounded by three modules: the
classifier, the HMM constructor and the Viterbi module.

The classifier module, based on a training corpus previously tagged,
creates a dictionary and a file which contains the ambiguity classes and the
existent tags. The dictionary puts the training corpus words together with all the
grammatical categories associated to them.

Up to this module the system does not work with words anymore, but
works with the sequences which were formed by the words ambiguity classes.

The HMM constructor creates Markov's model using the bigrams and
relative frequencies based on the ambiguity classes created by the classifier.

This way, the model is made by the sequences received from the
classification module (ambiguity tags and classes) added the chosen tag from
those listed on the respective class of ambiguity and from the estimate probability
for this tag.

The estimate probability is calculated using the algorithm of Relative
Frequency substituting the words by their ambiguity classes and using the
contextual probability.

p(W,T) = nP(ti.cI|ti.1)
Where:

W is the word sequence,
T is the tag sequence,
Cj is the ambiguity class,
tj is the tag word and
tu is the previous word tag.

The probability formula is given for:

p(ti.Ci | ti-i) =

where:

f(ti-l.ti.Ci)

ftti-0

Cj is the ambiguity class,

-75-

tj is the tag word and
ti_i is the previous word tag.

Viterbi module discovers which is the most probable tag sequence of a
corpus from HMM model generated by the constructor.

3.5 Co-operation layer
Aiming to accomplish the communication tasks, social reasoning and

control, agent tagger is "involved" in a module which we call Co-operation
layer.

The Co-opweration layer give autonomy capability to the agents and the
necessary mechanisms to the accomplishment of the co-operative and the team-
work tasks. This layer implements the negotiation interaction and the messages
exchange between the society agents on the training and system tag stages.

Taking decision process
Through this process the society takes the decision of making the sequence

generic or of keeping it specific to each agent.
If all the specific agents send the same sequence to the Generic Agent, it

can calculate an estimate average probability, store this sequence and send to the
Specific Agents a message asking than to eliminate from their models the
sequence which now is a generic one. The estimate average probability is
calculated on the weighted mean way in relation to the quantity of words of each
training corpus. This way the biggest corpora will be represented on a more
relevant way on this average.

During the tagging stage, the generic agent uses the estimate average
probability in order to pre-tag the texts received before sending to the
correspondent specific agent the text style which will complete the tag.

At the moment the specific agent get to the end of their corpus data, these
ones send messages to the Generic Agent telling about this event.

After receiving the message of end of data from all Specific Agents, the
Generic Agent sends to than message of end of process.

4 PROTOTYPE IMPLEMENTATION
The prototype implementation was developed on C++ language for Unix

machines with Solaris operational system at MASENV environment which uses
the object classes of DPSK+P.

The DSPK+P [CARD92] is a library of classes which uses a general
purpose data structure in order to construct shared objects (classes and instances).
This data structure is compound by a class name (string) plus a facet set (slots),
with pairs of value-attribute and defined by class C++ DPSK_OBJECT. This class
provides the basic construction for the interface C++ of DPSK+P.

The structural base of interface C++ is compound by: Slots which form the
fundament to local objects, local objects form the fundament to shared objects and
lockers (transactions) which support classes and recoverable instances.

The MASENV (Multi Agent Sofware ENVironment) corresponds to a
layer which goes on DPSK+P which allows to generate the communication

-76-

through messages among different processes called agents. These agents are
connected among themselves so that they can form a net called society.

4.1 Training Corpora
On the architecture evaluation three training corpora were used, each one

with a type of text: academic style, sportive style and religious stype.
The corpora were submitted to a statistical analysis with the objective of

showing the differences on the tag sequences found in each text style. On table 4.7
we present a summary in order to demonstrate that certain tag sequences have
similar probability in the three corpora while others differs a lot, this shows that
certain sequences are generic to the corpus used and others are specific to certain
text style.

TAG Academic Sportive Biblic
Noun 30% PREP 29% PREP 33% CONJ
Verb 23% ARTI 26% PREP 24% PREP
Pronoun 46% NOUN 43% VERB 41% VERB
Preposition 57% NOUN 39% NOUN 44% NOUN
Conjunction 31% ARTI 29% VERB 28% VERB
Article 86% NOUN 82% NOUN 60% NOUN

Table 4.7 - Tag Sequences

5 CONCLUSION AND FUTURE WORK
This work proposes a distributed architecmre for a corpora tag through the

Multiagent paradigm.
We are in need of great volumes of tag corpora which is fundamental to the

Natural Language Processing and much have been done to achieve this.
In the last few years, works which apply the Multiagent paradigm have

emerged in different areas and they have got success on the Natural Language
Processing.

Based on this we have studied the Multiagent model. Natural Language
Process in general and Processing based on Corpus and taggers in special.

Our proposal wants to contribute not only with the Natural Language
Processing, in relation to the efficiency and to the tag problem focusing, but also
to the Multiagent systems by presenting a proposal of distributed architecture and
tagger agents.

This work is the result of a proposal of implemented Multiagent
artchitecture and on tests with an initial set of texts.

This is a generic architecture which can be used to tag text of other
languages besides Portuguese.

The approach used is also independent of the tagger used, so it can be
applied to other statistical taggers. The implementation model allows the use of
the agents' co-operation layer and also to use another tagger if adapting the code.

-77-

One of the system limitation is the impossibility of negotiation among
agents to take place simultaneously to the learning of each corpus. It was not

-possible because of the tagger characteristics. The implementation of this
characteristic would make the system more complex, once there would be the
necessity of synchronisation, even though, we believe that there could have been
some profit on performance.

The characteristics of Mental State of the agents were not formally model
in this work. We believe that being the negotiation process so simple, such
characteristics would not be necessary.

After this work, we intend to make more tests with the developed prototype
in order to get means to compare the architecture performance in relation to tagger
agent, as well as with other taggers. The comparison measure should be not only
in terms of tagging efficiency (correctly tagged words divided by the total of
words), but also in terms of computer science resources used.

Our future work will be, for sure, to improve the implemented prototype.
To recognise the text style to be tagged is a desirable characteristic of the system.

Improve the negotiation process and make it simultaneous to the
construction process of each specific agent model is the type of work which we
believe can make our approach richer.

6. REFERENCES

[ALLE94] ALLEN, J. Natural language understanding. The

Benjamin/Cumming Company. 654p. 1994.

[ANNE98] ANNES, R.; OLIVEIRA, F. M. Multi-Agent Part-of-Speech

Tagging. Multi Agent Systems Models Architecture and

Applications II Iberoamerican Workshop on D.A.I, and MAS.

Francisco J. Garijo and Christian Lemaitre (Eds.) Toledo,Spain,

1998.

[BRIL92] Brill, Eric. A simple rule-based part of speech tagger. In

proceedings of The DARPA speech and Natural Language

Workshop, p. 112-116, 1992.

[BRIL93] BRILL, E,; A Corpus-Based Approach to Language Learning.

Tese de Doutorado. Universidade da Pensilvania, 154p. 1993.

-78-

[CARD92] CARDOZO, E. DPSK+P User's Manual C++ Interface

Version 1.0. Engineering Design Reaserch Center, Carnegie

Mellon University, 1992.

[CHAR93] CHARNIAK. E. Statistical language learning. London:

Abradford Book.The MIT Press. 1993. 170p.

[CHUR93] CHURCH, K.; MERCER, R. Introduction to the Special Issue

on Computational Linguistics Using Large Corpora.

Computational Linguistics Vol. 19 N.1. 1993.

[DEMA90] DEMAZEAU, Y.; MÜLLER, P.P. Decentralized Al. Morgan

Kaufmann, 1990.

[MARC93] MARCUS, M.P. SANTORINI, B e MARCINKIEWICZ, M.A.

Building a Large Annotated Corpus of English - The Penn

Treebank. Computacional Linguistic Vol. 19 N.2.1993.

[MERI94] MERIALDO, B.; Tagging English Text with a Probabilistic

Model. In Computacional Linguistic, V20, n2 p.155-171, 1994

[VILL95] VILLAVICENCIO, A. Avaliando urn Rotulador Estatistico de

Categorias Morfo-sintäticas para a Lfngua Portuguesa.

Dissertacäo (Mestrado), UFRGS, 1995.

[WERN92] WERNER, E. The Design of Multi-Agent Systems" in

Decentralized AI3. WERNER, E. & Demazeau, Y., (eds). Elsevier

Science Publishers B.V.,1992.

-79-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

A Platform Independent Parallelising Tool Based on Graph
Theoretic Models

Oliver Sinnen* and Leonel Sousa

Instituto Superior Tecnico - INESC
Rua Alves Redol 9, 2

P-1000 Lisboa, Portugal
{oliver.sinnen, las}Qinesc.pt

Abstract. Parallel programming demands, in contrast to sequential programming, sub-task
identification, dependence analysis and task-to-processor assignment. This paper presents
a new parallelising tool that supports the programmer in these early challenging phases of
parallel programming. In contrast to existing parallelising tools, the proposed parallelising
tool is based on a new graph theoretic model, called annotated hierarchical graph, that
integrates the commonly used graph theoretic models for parallel computing. Part of the
parallelising tool is an object oriented framework for the development of scheduling and
mapping algorithms, which allows to rapidly adapt and implement new algorithms. The
tool achieves platform independence by relying on internal structures that are not bound to
any architecture and by implementing the tool in Java.

1 Introduction

The programming of a parallel system for its efficient utilisation is complex and time consuming,
despite the many years of research in this area. Parallel programming demands much more than
sequential programming, since (i) sub-tasks which can be executed in parallel must be identified,
(ii) the dependence between the sub-tasks has to be analysed and (iii) the tasks have to be mapped
and scheduled to a target system.

Due to the high complexity of parallel programming, research on methods, mechanisms and
tools to support the parallelisation of tasks has been encouraged. Many tools, languages and
libraries emerged from this research. Even tough, the majority of them only supports the coding
and result analysis, there are some tools, in this paper called parallelising tools, that address the
challenging early phases of the development of a parallel program (e.g. CASCH [1], Task Grapher
[2], PYRROS [3], CODE [4], Meander [5], or [6]).

Parallelising tools use commonly graph theoretic models for the representation of a program
to be parallelised. Computation is associated with the vertices and communication with the edges
of the graph. The graph is generated from an initial description of the program to be parallelised
(for example in a proprietary task graph language [3]) or it is interactively constructed in the
environment of a parallelising tool [4]. The Directed Acyclic Graph (DAG) [7] is the most common
model employed and a lot of recent research has been accomplished in the area of mapping and
scheduling algorithms (e.g. [8,9]) for this graph model. A shortcoming of this graph model is,
however, its incapability to model code cycles explicitly. Loops with a large or even, at compile
time, unknown number of iterations cannot be represented with a DAG. Other graph models,
like the Temporal Communication Graph (TCG) [10] or the Interactive Task Graph (ITG) [11]
overcome this limitation.

While the majority of the parallelising tools is based on only one graph model, which is mostly
the DAG (e.g. [1-3]), they also often use only a limited number of scheduling and mapping algo-
rithms. This further limits their area of application, since the scheduling and mapping heuristics
often have affinity for certain types of applications and parallel architectures. In other words, a

* Candidate to the Best Student Paper Award

FEUP - Faciddade de Engenharia da Universidade do Porto

scheduling heuristic may produce good results only for some types of programs on certain ar-
chitectures. An extensible and adaptable design of the parallelising tool is necessary to include
algorithms tailored for different types of applications and parallel architectures.

A myriad of scheduling heuristics for the DAG model [12-15] has been developed by the par-
allel computing community. Scheduling heuristics assume in general a homogenous multiprocessor
system with fully connected processors. This characteristic is, however, rarely found in a real world
target machine. Only a few algorithms were proposed that take a realistic hardware architecture
into account [2,16,17]. One should expect better scheduling results for real world machines from
these algorithms, but unfortunately no practical comparison of scheduling heuristics has been pub-
lished. The comparisons found in literature [12-15] use the schedule length as a measure, but not
the actual execution time on a target system. For a parallelising tool to benefit from the program-
mers knowledge about the target system, it must provide a scheme for the specification of these
characteristics in a way that the appropriate algorithms can use them.

A parallelising tool can benefit from the natural strength of humans, such as information ab-
straction, pattern matching and problem decomposition, when it leaves some of the parallelisation
decisions to the user. These decisions can be, for example, the choice of a scheduling algorithm, the
characterisation of the target machine or the manipulation of the parallel program structure. A
visual environment, which displays the parallel structure (in two or three dimensions) and allows
interactive manipulations [4,6] gives the user the most flexibility. In such an environment, the
programmer can understand, correct and optimise the parallel structure.

This paper proposes a parallelising tool that addresses the above discussed issues. The paral-
lelising tool is based on a new hierarchical graph model that integrates multiple graph theoretic
models, to support a wide range of applications and parallel architectures. Its design allows the
adaption and modular extension of parallelising algorithms, by integrating new algorithms for
scheduling, mapping and structure manipulation. A visual 3D environment displays the parallel
structure of the program, to support the parallelisation decisions of the programmer. For platform
independence, the parallelising tool is implemented in Java.

The rest of this paper is organised as follows: Section 2 presents an overview of the parallelising
tool and introduces its principal components. After the classification and comparison of graph
theoretic models, a new graph model called annotated hierarchical graph is presented in Section
3. The subsequent sections then discuss the components of the tool. Section 4 presents the type
of inputs accepted by the tool, Section 5 describes the interactive visual environment, Section 6
analyses the module block that provides the algorithms, and Section 7 provides information about
the output of the parallelising tool. We finally conclude this article in Section 8.

2 The Proposed Parallelising Tool

The overall structure of the parallelising tool we are currently developing is shown in figure 1.
As indicated by the shaded areas in the figure, the tool is divided into four main parts. The
input part serves for the initial description of the task to be parallelised. Modules within this
part generate an annotated hierarchical graph from a task defined, for example, in a sequential
programming language (e.g. C) or as an equation (e.g. in I#TEX syntax). The annotated hierarchical
graph is further on the representation of the task to be parallelised and forms the core of the
parallelising tool. In the central part, this graph is visualised in a 3D graphical environment. This
environment allows the analysis and manipulation of the task's parallel structure and, in addition,
the possibility to interactively construct an annotated hierarchical graph in a direct way. To
provide the algorithms and methods for parallelisation, such as structure manipulation, scheduling
and mapping, the central part interfaces to a module block containing a pool of algorithms.
Taking the annotated hierarchical graph as input, these algorithms can be executed by the user for
mapping and scheduling a task onto a target machine. Algorithms that take the target machine's
characteristics into account, receive this information as an additional input, provided by the user.
The mapping and the schedule of the task is the principal output of the tool. A programmer can
then use traditional tools to code the task, guided by the obtained schedule and mapping. A long

■ 82-

VEC PAR '2000 - 4th International Meeting on Vector and Parallel Processing

term objective in the development of the tool is to employ code generators which automatically
build the program.

Modules

Mapping

Structure &
ceoer.dence manipulator.

Analyse &
graph generator

Code Generator

Input;

Analyse &
graph generator

Central pan

J Annotated *—*
i\ Hierarchical Graph £

Interactive cons true:; c] ^a::sa::on

l \^ Jß> "~"~"'"""~ ■

I x>*^—*^

Output

Fig. 1. Overview of the parallelising tool

3 Annotated Hierarchical Graph

The annotated hierarchical graph forms the core of the proposed parallelising tool. Unlike other
parallelising tools, our tool is not based on only one graph theoretic model. It rather tries to
integrate various graph models and thus to benefit from their combined advantages. Before the
annotated hierarchical graph is described, we, therefore, analyse and classify the utilised graph
theoretic models.

3.1 Graph Theoretic Models

In a graph theoretic abstraction, a parallel program consists of two activities: computation and
communication. Computations or tasks are associated to the nodes and communications to the
edges of the graph. All instructions of one task are executed in sequential order, i.e. there is no
parallelism within one task. A node can begin execution only when all inputs have arrived and
outputs are available at the end of the task's execution.

In [18] a classification scheme for graph theoretic models was proposed. In the context of a
parallelising tool, a graph model is distinguished according to (i) the parallel computations that
can be modelled, (ii) the supported parallel architectures and (iii) the available algorithms.

Within these three classification groups the models are analysed according to (a more detail
description of the classification scheme is in [19,18]):

1. Parallel computations

- Granularity - fine grained, medium grained and coarse grained

•83-

FEUP - Faculdade de Engenharia da Universidade do Porto

- Iterative computations - how are iterative computations modelled?
- Regularity - can the model represent regularity explicitly?

2. Parallel architectures
- Data and instruction stream - SIMD and MIMD streams
- Memory architecture - shared memory (UMA), distributed memory and shared distributed

(XUMA) memory
- VLSI systems - VLSI array processors with synchronous data and control flow

3. Proposed algorithms
- Dependence analysis and exploitation of parallelism
- Task-to-processor mapping
- Scheduling

To choose a graph theoretic model for the parallelising tool, we have analysed and compared
the common graph theoretic models using the above classification scheme [19]. From the many
existing models, DAG, ITG, and TCG, turned out to be of interest for the parallelising tool. In
the following sections these three models are briefly discussed and the aspects which had influence
on the annotated hierarchical graph structure are pointed out.

Directed Acyclic Graph (DAG) The designation DAG [7] merely reflects the graph theoretic
nature of this graph model, which is consequently directed and acyclic. Interesting for a paral-
lelising tool are node and edge weighted DAGs, as they well reflect parallel computations with
non-uniform computation and communication costs.

The acyclic property of the DAG imposes a restriction on how parallel computations are
modelled. Iterative computations, which build a cyclic structure, are urged to be modelled in
a certain form. A coarse-grained approach consists in projecting the iterative part of a parallel
computation onto one task. On the other hand, in a fine-grained approach only the tasks of one
iteration are modelled, without taking into account the inter-iteration dependence. For a complete
fine-grained representation, the iterative computation may be 'unrolled' where each iteration is
represented by its own sub-graph, and these sub-graphs are connected according to the inter-
iteration dependence.

In the last approach, the size of the DAG increases linearly with the number of iterations.
In practice, this representation may generally be used only for small numbers of iterations. Also,
the number of iterations has to be known at compile time; iterative computations whose iteration
number is only known at runtime cannot be modelled with this approach.

The typical granularity of modelled computations is coarse-grained, as the alternative designa-
tions as task graph and macro-dataflow graph indicate. The DAG is usually employed for mapping
and scheduling on distributed-memory architectures. Node and edge weighted DAGs are only used
for MIMD streams, since no spatial regularity is exploited by the DAG model, which is necessary
to support SIMD streams.

A myriad of mapping and scheduling algorithms [12-15] were proposed based on node and edge
weighted DAGs, whose directed and acyclic properties allow efficient scheduling algorithms.

Iterative Task Graph (ITG) The ITG [11] belongs to the group of data flow graphs, which
model the flow of data or signals in a computation. Data flow graphs are directed graphs, but
in contrast to the DAG model, data flow graphs can incorporate cycles and allow thus a more
compact representation of computations. For a data flow graph to represent a valid computation,
cycles must include at least one delay [20]. A delay is represented by a weight associated with
an edge. It may be expressed as a multiple of a time unit (often denoted D) or the number of
iterations the communication between two nodes is to be delayed. A delay "breaks" the precedence-
constraint cycle and allows thus a computable representation of iterative computations. Owing to
the delays, data flow graphs can model intra-iteration (without delays) and inter-iteration (with
delays) dependence. The efficient scheme for representing iterative computations, reduces essen-
tially the number of nodes in a graph compared to an unrolled DAG and allows nondeterministic

-84-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

numbers of iterations. Moreover, iterations are represented in a more intuitive and structured way.
Since iterative computations can be modelled in detail, the granularity is typically fine-grained to
medium-grained.

The Iterative Task Graph also contains edge and node weights to reflect the computation and
communication costs (figure 2a), which are mainly used for exploiting parallelism, for mapping
and for scheduling. Unfolding, re-timing or software pipelining are some examples of the trans-
formations applied to parallel computations represented by this model. The ITG is appropriate
for computations with arbitrary costs on (shared) distributed memory architectures and VLSI
systems, given that it explicitly provides computation and communication costs. As no regularity
is included in the ITG. except for iterative computations, MIMD streams are the typical data and
instruction streams supported by the model. For SIMD streams, the ITG leaks spatial regularity.

(a) (b)

ci/cij- computation cost; wi - communication cost; iD - delay: pi - process

Fig. 2. The Iterative Task Graph (a) and the Temporal Communication Graph (a)

Temporal Communication Graph (TCG) The Temporal Communication Graph [10] is based
on the space-time diagram introduced by Lamport [21]. The TCG is a directed and acyclic graph
that is process and phase oriented. A computation is divided into sequential processes p\,po. ■ ■ -,pn

and every node of the graph is associated with exactly one process. A node, associated with
process pt, has at least one edge pointing to its direct successor on process pt (intra-process
dependence) and may also have a communication edge to a node of another process pj (inter-
process communication). A node weight reflects the computation costs and a weight associated to
an inter-process edge represents the communication costs. Communication between nodes of the
same process is considered to be negligible. Figure 2b illustrates a TCG with three processes. As
the graph built by the nodes and edges is a directed and acyclic graph it may be considered a
node and edge weighted DAG with zero communication costs for intra-process edges.

A TCG can be described with the aid of the LaRCS [10] graph description language, which
allows to specify phases of computation and communication. These phases may exploit spatial and
temporal regularity, for example a loop is a phase of temporal regularity. On the one hand, this
process and phase oriented perspective of parallel computations limits the flexibility of the model.
On the other hand, the TCG draws its power from this scheme, as iterative and other regular
computations are described in an efficient way. The process-oriented view is, moreover, intuitive
to many programmers for describing computations.

In the OREGAMI tool [22] the TCG is used for mapping and scheduling. The algorithms
employed use the regular structure of the TCG. Furthermore, mapping and scheduling algorithms
based on the Task Interaction Graph (TIG, an undirected graph model [19]) and on the DAG
model may also be used. As mentioned above, the TCG may be considered a node and edge
weighted DAG and projecting the TCG along the time axis yields the TIG.

The TCG, considered as a DAG, underlies the same limitations to model an iterative compu-
tation as the DAG model itself. However, the TCG can be treated in parts due to its description
in phases. In the OREGAMI tool, for example, successive portions of the graph are generated for

-85-

FEUP - Faculdade de Engenharia da Universidade do Porto

mapping and scheduling as needed. As a result, the complexity and the memory requirement are
reduced for mapping and scheduling.

Relations Between the Graph Models Apart from the characteristics discussed above, there
exist relations between the graph models, some of which were already mentioned during the above
discussion. These relations can be used to transform one graph representation into another, for the
purpose of applying an algorithm only available for one graph representation or to yield a more
compact representation. In figure 3 the relations of the discussed graph models are depicted. Three
types of transforms between graph models can be defined: reduction, projection and unrolling. By
reduction of graph properties, a complex graph model can be transformed into a simpler model,
whose properties build a subset of the complex model's properties. With projection, a graph
model can be transformed into another model with a more compact representation of the parallel
computation. The reverse process to projection is unrolling. The ITG, for example, is unrolled to
a DAG by constructing a sub-graph for every iteration and connecting these sub-graphs according
to their inter-iteration dependence.

Fig. 3. Relations between graph models

3.2 Structure of the Annotated Hierarchical Graph

A conclusion drawn from the comparison of the graph theoretic models is that none of the graph
models is universal. In other words, none of the models is capable of representing every type
of application. DAGs are mainly used for a coarse grained representation, ITGs can only model
iterative computations and TCGs are limited by its process and phase approach.

Inspired by the TCG, we developed an hierarchical model that can represent coarse grained
as well as iterative computations, but which is not limited by a process-phase orientation. The
principal idea is that a node of a graph can itself be again a graph, as shown in figure 4a. In
this example, the directed main graph consists of the nodes n\,ri2,nz, of which node n3 is itself
a directed graph with the nodes 7131,7132,7233. The subgraph is cyclic and represents an iterative
computation, whose dependence cyclic is broken by the delay D on the edge between node 7133
and 7^3i.

Formally, a hierarchical graph G is a pair (V, E), where V is a finite set of vertices connected
by a finite set of edges E. An element e = (u, v) of E denotes an edge between the vertices
u,v £ V. An edge (u,v) denotes an edge from u to v and, therefore, (u.v) ^ (v,u). Note, that
loops and self loops are possible. A vertex u € V can itself be a hierarchical graph Gu, where the
edges entering vertex u, (v,u) £ E, v £ V, enter the source vertices of Gu and the edges leaving
vertex u, (u, v) £ E, v £ V, leave the sink vertices of Gu. Source vertices are those vertices which.

•86-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

after removing all edges with delay, have no entering edge and sink vertices are those which, after
removing all edges with delay, have no leaving edge. In the example of figure 4a node 7131 is a
source vertex and node 7133 is a sink vertex.

The hierarchical graph can be made a simple directed graph by substituting the nodes that
are themselves graphs with their respective graphs. This is shown for the example of figure 4a in
figure 4b, where node n% was substituted by its graph.

The hierarchical graph model permits to represent iterative and none iterative computations
in one graph model in a compact form. Therfore, this graph integrates the DAG and the ITG into
one model without being limited by a process and phase orientation like the TCG. Depending on
the purpose, the graph can be interpreted in various ways. An algorithm may consider only the
coarse grained task graph (only considering the highest hierarchical level) or the sub-graphs can be
treated separately. It is also possible to expand the graph to a flat directed (cyclic) graph as done
with the example from figure 4a in figure 4b. The latter can further be unrolled (supposed that the
number of iterations is known for cyclic parts) to a DAG. The hierarchical graph model provides
the flexibility to represent a wide range of applications and still all the algorithms proposed for
the three graph models discussed above can be employed.

(b)

Fig. 4. Hierarchical graph (a) and expanded hierarchical graph (b)

Annotation Associated with every node of the hierarchical graph is an annotation. This an-
notation is in textual form and represents the computation executed by the node. Code in C or
VHDL are two examples for textual annotations. The annotation may serve for the estimation
of the computation time or it may be used for automatic code generation at the output of the
parallelising tool. Moreover, the textual task description allows to estimate the execution costs of
the task depending on the architecture of the target machine.

The communication of the edges is also described by an annotation, which represents the data
structure transmitted on the edge and the amount of data. Again, this'can be used to estimate the
communication costs or for the code generation at the output of the tool. For example, a send()
and a receive () command may be inserted, with the respective data structure as parameter, in
the code of the source and sink node of the edge, respectively [1]. With the knowledge of the amount
of data transmitted on the edge, the communication costs can be estimated according to "startup
cost+transmission speedx amount of data" [11], considering the target machine's characteristics.

The interpretation of the annotations is left to the various algorithm and, thus, the annotated
graph structure is not linked to a certain form of task or communication representation. Also, the
graph representation of a program is platform independent, as costs can be estimated only when
needed. Note, that a textual description of a task or communication is, of course, not obligatory,
and the user can also provide estimated costs.

-87-

FEUP - Faculdade de Engenharia da Universidade do Porto

4 Program Input

A program to be parallelised must be initially described in an adequate form to be analysed in a
parallelising tool. This description is crucial for the exploitation of parallelism. Various approaches
for this initial description are used in parallelising tools. Parallelising compilers commonly use an
augmented sequential programming language (e.g. HPF, pC-^, Split-C) and concentrate on the
parallelisation of (cost intensive) loops [23]. The CASCH parallelising tool [1] takes as input a
program with procedure calls and creates a node for each procedure in a DAG representing the
program. A proprietary task graph language is used by PYRROS [3] for the construction of the
DAG. In the CODE programming environment [4] a subset of the C programming language is
used to define the tasks computation, which is primarily used to call coarse grained functions. The
structure of the DAG is constructed interactively in CODE's environment. In [6] a set of algebraic
equations is entered in an iterative editor, from which a dependence graph is generated.

The core of our parallelising tool is the annotated hierarchical graph. Consequently, every initial
input from which such a graph can be generated is feasible. Therefore, the proposed parallelising
tool is not limited to any particular form of initial description. The input is rather modularised to
allow different initial descriptions. This is even important, as the tool supports coarse grained as
well as iterative computations. The above referenced parallelising tools use one initial description
depending on the type of computation they support.

As shown in figure 1, we currently implement two types of initial task description. One is
a description as simple algebraic equations. From certain equations found in signal processing,
for example recurrence equations, it is straight forward to generate a dependence graph [20]. In
contrast to [6], an equation is, however, specified in textual form (with a small subset of the ET^X
math syntax) and not interactively entered. The equation is then parsed and analysed and a
hierarchical graph is generated. The functions executed by every node are specified in the textual
annotations of the graph. Of advantage is the utilisation of the DTgX syntax, since any editor
that supports ETEX can be used to specify the equation comfortably. The graph generated form
an equation has typically an iterative structure.

The other type of description that generates iterative structures is the specification of loops
with a simple subset of the C language. Rather than parsing a hole program, this input analyses
only small code fragments consisting of nothing but a loop that is parsed and analysed for the
construction of an iterative graph. For the analysis of the code, techniques found in automatic
program parallelisation are employed [23]. The annotations of the graph's node consist of the code
parts found in the initial description of the task.

Coarse grained computations can be specified as an interactively constructed graph in the
visual environment,which is presented in the next Section.

5 Visual Environment

The central part of the parallelising tool is a visual environment (figure 1). Here, the graphs gen-
erated from the initial descriptions are visualised. When fully implemented, the graph is displayed
in three dimensions and the programmer can change the viewpoint, edit annotations and manipu-
late the structure of the graph. Moreover, a full annotated hierarchical graph can be interactively
constructed in this visual environment. It is also possible to construct the coarse grained structure
of a program and to use the other input types to generate finer grained iterative computations
that can be integrated in the overall structure. We are currently integrating a first experimental
environment into the parallelising tool. Figure 5 shows the graph of a localised matrix-matrix
multiplication (N=4) visualised in the experimental environment.

With the interactive environment, the parallelising tool can benefit from the natural strength
of humans, such as information abstraction, pattern matching and problem decomposition. The
programmer can take decisions, which could not, or only unsatisfactorily, be taken automatically.
These decisions can be, for example, the choice of a scheduling algorithm or the manipulation of
the parallel program structure. In such an environment, the programmer can understand, correct
and optimise the parallel structure.

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

:*#

>A I |^r"4t"'"''*^- -I

-»"Ar—p©-^ I

Fig. 5. Visualised graph for a matrix-matrix multiplication (N=4)

The scheduling, mapping and structure manipulation algorithms, which can be applied to a
graph, can be chosen from a set of algorithms provided by the module block, to which the visual
environment interfaces.

6 Module Block

The module block is responsible to provide the parallelising algorithms for our parallelising tool.
It is conceived to provide a wide range of algorithms and to be adaptable and extensible for new
algorithms. To achieve this goal, we developed an object oriented framework for scheduling and
mapping algorithms.

The framework was implemented in Java and we employed the Collection framework of Java
2 (aka Java 1.2) for the basic data structures. It is composed of the following packages:

- graph - This package comprises a class hierarchy for a general graph framework. On the top of
the hierarchy is a multi-graph which permits directed or undirected edges, cycles and parallel
edges and the hierarchy goes down to trees and directed acyclic graphs. In conjunction with
this classes, basic graph algorithms like BFS, DFS, topological order or connected components
are provided.

- hierarchicalgraph - This package contains the classes for the annotated hierarchical graph.
It is based on the graph package and provides the elements for the hierarchical structure and
the annotations. As the hierarchical graph forms a superset of the DAG and ITG model, it
can be used to represent these models.

- schedule - In the schedule package, the classes to represent mappings and schedules of
programs represented by graphs are provided. This includes classes for the simple mapping
of sub-tasks to processors (clusters), the definition of the relative order among the sub-tasks
of the same processors, and the exact schedule of sub-tasks with their starting and finishing
times. Methods for the visualisation of a schedule as a Gant chart are also included.

- architecture - This package is used for the definition of the target machine's architecture.
It is also based on the graph package, as the architecture of a parallel machine is described
as a graph. Generally, this is an undirected graph (however a directed graph is also possible),
where the nodes represent the processors and the edges the communication links. Weights
associated with the processors represent their relative processing speed and the weights of the

■ 89-

FEUP - Faculdade de Engenharia da Universidade do Porto

links their communication speed. Common architectures, as meshes, hypercubes or rings, are
generated by method invocations.

The hierarchical graph class provides basic functions that are commonly used by scheduling and
mapping algorithms. Examples are the calculation of the bottom or top level of a node, the critical
path, or the unrolling of cycles. These functions reduce the effort for a programmer to implement
a new scheduling algorithm.

As the annotated hierarchical graph is based on multiple graph models, algorithms based on
different models can be employed in the parallelising tool. The most scheduling and mapping
algorithm were proposed for the DAG model [12-15]. As mentioned in the introduction, only few
algorithms take the target system's architecture into account. Since we expect better results from
these algorithms, three of them - MH [2], DLS [16], BSA [17] - were among the first algorithms
implemented for the parallelising tool. Most of the DAG algorithms analyse the structure of the
DAG for scheduling. New approaches exist that take genetic algorithms into account [24,25].

Apart from the DAG algorithms, algorithms based on the ITG are being implemented. For
this graph model unfolding, re-timing and software pipelining are popular techniques [26,27,11].
Some of these algorithms utilise again DAG scheduling algorithms for partially unfolded ITGs.

To benefit from regular structures of graphs, especially from graphs derived from equations,
techniques known from the VLSI processor design [20] are employed. These techniques use the
regular structure to project (map) nodes to processors and to schedule synchronous executions.

7 Output

The output of the tool is the parallel structure of the program, the schedules and mappings. From
the initial description of the program the user obtained a parallel structure displayed in the visual
environment. By manipulating this structure, applying mapping and scheduling algorithms the
user receives a guideline for the implementation of the program with the classical parallel tools. The
user can read off the partition into subtasks from the displayed graphs as well as the dependence
between these sub-tasks. The schedules displayed as Gant charts allow the programmer to define
the execution order and/or starting time of the sub-tasks. The tool permits the programmer
to experiment with mapping and scheduling algorithms before the actual implementation of the
program. This is in contrast to classical parallelisation tools that display the performance of the
program after the implementation.

A long term objective of the parallelising tool is to utilise code generators for the implementa-
tion of the program. A code generator can include communication and synchronisation primitives
in the code annotated to the nodes, according to the edges of the graph [1,4]. This can be done in
a platform independent form (e.g. C with MPI functions, VHDL) or by utilising communication
primitives for the specific architectures and platforms.

8 Conclusions

This paper presents a new parallelising tool based on graph theoretic models. Its design is platform
independent as it is implemented in Java and as its internal structures are not bound to any
architecture.

We proposed a new graph theoretic model, called the annotated hierarchical graph, that inte-
grates the wide spread models DAG, ITG and TCG. This graph model renders the tool universal,
since it is capable of representing coarse grained and iterative computations in a single model and
in a compact form. Existing parallelising tools are limited in their range of supported applications.
With the annotated hierarchical graph, techniques from different areas of scheduling and mapping
research are integrated into one tool.

We described the elements of the parallelising tool and pointed out its modular structure. The
proposed framework for the development of parallelising algorithms allows to rapidly implement
and adapt new algorithm for the parallelising tool. Moreover, the tool permits to develop new

■90-

VEC PAR '2000 - 4th International Meeting on Vector and Parallel Processing

algorithms without the need for a proprietary test environment. The visual environment supports
the user in parallelising decision, because the display of the parallel structures of a program help
the user to understand, correct and optimise these structures.

In the future, the advantages of this new tool has to be demonstrated with the parallelisation
of programs that benefit from the graph's hierarchical structure.

References

1. Ishfaq Ahmad, Yu-Kwong Kwok, Min-You Wu, and Wei Shu. Automatic parallelization and scheduling
of programs on multiprocessors using CASCH. In Proceedings of the 1997 International Conference
on Parallel Processing (ICPP'97), pages 288-291, Bloomingdale, Illinois, USA, August 1997.

2. Hesham El-Rewini and T. G. Lewis. Scheduling parallel program tasks onto arbitray target machines.
Journal of Parallel and Distributed Computing, 9(2):138—153, June 1990.

3. T. Yang and A. Gerasoulis. PYRROS: static scheduling and code generation for message passing
multiprocessors. In Proc. of 6th ACM International Conference on Supercomputing, pages 428-437,
Washington D.C, July 1992.

4. Rajeev Mandayam Vokkarne. Distributed execution environments for the CODE 2.0 parallel pro-
gramming system. Master's thesis, University of Texas at Austin, May 1995.

5. Guido Wirtz. Developing parallel programs in a graph-based environment. In D. Trystram, editor,
Proc. Parallel Computing 93, Grenoble, France, pages 345-352, Amsterdam, September 1993. Elsevier
Science Publ., North Holland.

6. Elena V. Trichina and Juha Oinonen. Parallel program design in visual environment. In IEEE
International Conference on High Performance Computing, Bangalore, India, December 1997.

7. V. Sarkar. Partitionning and Scheduling Parallel Programs for Execution on Multiprocessors. MIT
Press, Cambridge MA, 1989.

8. D.P. Darbha, S.; Agrawal. Optimal scheduling algorithm for distributed-memory machines. IEEE
Transactions on Parallel and Distributed Systems, 9(1):87 - 95, January 1998.

9. Jing-Chiou Liou and M.A. Palis. A new heuristic for scheduling parallel programs on multiprocessor.
In 1998 International Conference on Parallel Architectures and Compilation Techniques, pages 358 -
365, October 1998.

10. Virginia M. Lo. Temporal Communication Graphs: Lamport's process-time graphs augmented for the
purpose of mapping and scheduling. Journal of Parallel and Distributed Computing, 16(4), December
1992.

11. Tao Yang and Cong Fu. Heuristic algorithms for scheduling iterative task computations on distributed
memory machines. IEEE Transactions on Parallel and Distributed Systems, 8(6):608-622, June 1997.

12. A. Gerasoulis and T. Yang. A comparison of clustering heuristics for scheduling DAGs on mulipro-
cessors. Journal of Parallel and Distributed Computing, 16(4):276-291, December 1992.

13. A. A. Khan, Carolyn L. McCreary, and M. S. Jones. A comparison of multiprocessor scheduling
heursitics. Technical Report ncstrl.auburn_eng/CSE94-02, Department of Compiter Science and
Engineering, Auburn University, Auburn, AL 36849, January 1994.

14. Y. Kwok and I. Ahmad. Benchmarking the task graph scheduling algorithms. In Proceedings of the
1st Merged Int. Parallel Processing Symposium and Symposium on Parallel and Distributed Processing
(IPPS/SPDP-98), pages 531-537, Orlando, Florida, USA, April 1998.

15. Yu-Kwong Kwok and Ishfaq Ahmad. A comparison of parallel search-based algorithms for multipro-
cessors scheduling. In Proceedings of the Second European Conference on Parallel and Distributed
Systems (EURO-PDS'98), Vienna, Austria, July 1998.

16. Gilbert C. Sih and Edward A. Lee. A compile-time scheduling heuristic for interconnection-constrained
heterogeneous processor architectures. IEEE Transactions on Parallel and Distributed Systems,
4(2):175-186, February 1993.

17. Yu-Kwong Kwok and Ishfaq Ahmad. Bubble scheduling: A quasi dynamic algorithm for static allo-
cation of tasks to parallel architectures. In Proceedings of the 1th IEEE Symposium on Parallel and
Distributed Processing (SPDP'95), pages 36-43, Dallas, Texas, USA, October 1995.

18. Oliver Sinnen and Leonel Sousa. A comparative analysis of graph models to develop parallelising tools.
In 8th IASTED Int'l Conference on Applied Informatics (AI'2000), Innsbruck, Austria, February 2000.

19. Oliver Sinnen and Leonel Sousa. A classification of graph theoretic models for parallel computing.
Technical Report RT/005/99, INESC, Instituto Superior Tecnico, Technical University of Lisbon,
Lisbon, Portugal, May 1999.

■91

FEUP - Faculdade de Engenharia da Universidade do Porto

20. Sun Yuan Kung. VLSI Array Processors. Information and System Sciences Series. Prentice Hall.
Englewood Cliffs, New Jersey 07632, 1988.

21. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of
the ACM, 21(7):558-565, July 1978.

22. Virginia M. Lo, Sanjay Rajopadhye, Samik Gupta, David Keldsen, Moataz A. Mohamed, Bill Nitzberg,
Jan Arne Teile, and Xiaoxiong Zhong. OREGAMI: Tools for mapping parallel computations to parallel
architectures. International Journal of Parallel Programming, 20(3):237-270, June 1991.

23. Utpal Banerjee, Rudolf Eigenmann, Alexandru Nicolau, and David A. Padua. Automatic program
parallelization. Proceedings of the IEEE, 81(2):211-243, February 1993.

24. Yu-Kwong Kwok and Ishfaq Ahmad. Efficient scheduling of arbitrary task graphs to multiproces-
sors using a parallel genetic algorithm. Journal of Parallel and Distributed Computing, 47(l):58-77,
November 1997.

25. Lee Wang, Howard Jay Siegel, Vwani P. Roychowdhury, and Anthony A. Maciejewski. Task matching
and scheduling in heterogeneous computing environments using a genetic-algorithm-based approach.
Journal of Parallel and Distributed Computing, 47(l):8-22, November 1997.

26. Keshab K. Parhi. Algorithm transformation techniques for concurrent processors. Proceedings of the
IEEE, 77(12):1879-1895, December 1989.

27. Keshab K. Parhi and David G. Messerschmitt. Static rate-optimal scheduling of iterative data-flow
programs via optimum unfolding. IEEE Transactions on Computers, 40(2):178-195, December 1991.

■92-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

A Tool for Distributed Software Design in the CORBA
Environment

Jan Kwiatkowski'", Maciej Przewozny2, Jose C. Cunha3

' Institute of Computer Science
University of Wroclaw

51-151 Wroclaw, Przesmyckiego 20, Poland
" Computer Science Department

Wroclaw University of Technology
50-370 Wroclaw, Wybrzeze Wyspianskiego 27, Poland

tel. (+48)(713203602, fax: (+48)(71)3211018
Emails: {przewozny, kwiatkowski}@ci.pwr.wroc.pi.

J Computer Science Department
University Nova of Lisbon

2825 Monte da Caparica, Portugal
tel: 351 (1) 2943220, fax: 351 (1)2948541

E-mail: jcc@di.fct.unl.pt

Abstract. Nowadays Distributed Object Oriented Environments are becoming
widely used. One of them is OMG's Common Object Request Broker
Architecture (CORBA). The paper deals with the short description of a tool
named U_CORBA, which supports the design process of CORBA applications.
The new tool was built under the MICO CORBA implementation. It gives
opportunity of creation of the class diagram of the application using the UML
notation and based on it generating the IDL files and application C++ headers.
The tool also includes some management functions, which allow a user an easy
way to visualize the state of the CORBA environment as well as managing it.

1 Introduction

Nowadays Object Oriented models are being used in many applications. On the other
hand with the increased necessity of enabling computers to work together a new kind
of programming and working environments are now becoming widely used - the
Distributed Object Oriented Environments. It is still too early to make guesses on
which one of these systems will become the standard. So far the strongest contestants
are IBM's System Object Model (SOM); Microsoft's Distributed Object Linking and
Embedding (OLE); OMG's Common Object Request Broker Architecture (CORBA).
Each one of them has their advantages and drawbacks. The paper deals with the short
description of a tool named U_CORBA, which supports the design of CORBA
applications. The CORBA environment was chosen, as it is the most advanced one in
terms of standard definition. Unlike some others, it has already available full
programming and runtime environments.

-93-

FEUP - Faculdade de Engenharia da Universidade do Porto

CORBA brought new concept used for the creation of applications in a distributed
manner. It is a solution for developing new application or making together some
working application [5,8]. Although there are a lot of different developing
methodologies and tools supporting application design, like UML, VPE, TRAPPER
and others working at different environments there are no such tools dedicated for
developing CORBA applications [2,3,4,7,9]. For designing a CORBA application,
Rational Rose is a commonly used environment [7]. This is the main motivation of
the work presented in the paper. The main objective of this work is to design and
implement a graphical tool that helps in developing CORBA applications. The
presented tool named U_CORBA gives opportunity to create the class diagram of the
application using the UML notation and based on it generating the IDL files and
application C++ headers. Additionally the tool includes some management functions,
which allow a user an easy visualization of the state of the CORBA environment as
well as of managing it. The accessible functions are similar to these ones which are at
OrbixManager from IONA Technologies [1]. It gives a user some benefits in
designing the CORBA applications during the development process. The prototype of
the tool was developed with the QT 1.44 library and MICO 2.2.5 [5] on Linux 2.2.5.
The structure of this paper is as follows. In section 2, a brief overview is presented of
the CORBA architecture. In section 3, the main functionalities of the U_CORBA tool
are described. Some implementation details are described in section 4. Section 5
presents an example of the use of the tool. Section 6 compares the tool to related tools
supporting Object Oriented development. Finally, section 7 presents some
conclusions and describes ongoing work.

2 CORBA Overview

CORBA stands for Common Object Request Broker Architecture and is a platform
defined by OMG - the Object Management Group, a consortium of several companies
and universities working together in its definition. The main purpose of the OMG is to
define a platform for heterogeneous distributed computing in which very different
hardware will work smoothly together - from super computers to embedded systems -
independently of the operating systems, programming languages and network
protocols they might be using.

In CORBA objects interact with each other by means of interface definitions, with
the information provided by these interfaces, potential clients of object services are
able to know what to expect from objects and how they should interact with them.
This interface is defined in OMGs IDL (Interface Definition Language) which
enables object services to be available to other objects written in almost any
programming language. By using IDL, the programmer lets the communication
infrastructure know the format of all messages an object can receive and send so that,
if necessary, they can automatically be transformed from one data representation to
another, providing transparent communication between different systems. The
communication infrastructure defined by OMG is called the OMA (Object
Management Architecture) and it is a set of protocols and services definitions that
allow very different objects to interact freely with each other. OMG defined a set of

-94-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

standard interfaces and functions for each component of the OMA. All CORBA
services communicate with each other through an ORB (Object Request Broker) that
handles and delivers all messages from one component to another so programmers do
not have to worry about distribution details, and can concentrate on solving the real
problem at hand.

When designing a CORBA application two files are generated: a skeleton and a
stub (figure 1). These files, when compiled and linked together with the service
implementation will act as translators between the object and the ORB. Because of
this the clients and object implementation can even be written in different
programming languages, one just has to generate the skeleton and stubs using the
appropriate IDL compilers.

IDL

Client
Code £A

Stub
Code

Skeleton
Code

Obj. Impl.
Code

Language Compiler
Linker

• Client

Stub

Object

Skel.

Object Request Broker

Fig. 1. The structure of CORBA application

There are currently some official IDL languages mapping specifications
standardised by OMG: for Java, C, C++, Smalltalk, Ada. Besides these there are other
mappings currently not supported by any standard, and many other IDL compilers are
specific for a given ORB. As OMG does not force any communication protocol
between the skeletons and the ORB (the HOP protocol is in common use), a given
skeleton will only be able to talk with its corresponding ORB. What happens if the
ORB being used is changed? That is not a problem, new skeletons must be generated
using the new IDL compiler and linked with unchanged object implementations - thus
achieving instant integration. Both client and object implementation are isolated from

-95-

FEUP - Faculdade de Engenharia da Universidade do Porto

the ORB by IDL interfaces so that the client does not even have to care about the way
objects are implemented, making modifications easy.

For our purpose we have chosen the MICO CORBA implementation, which is a
complete CORBA 2.2 compliant implementation. MICO is freely available. The
difference to other freely available implementations is that MICO is developed for
educational purposes and that the complete sources are available under the GNU-
copyright notice. Among free ORB with C++ mapping this one provides the most
impressive list of features:
• Modular ORB design: new transport protocols and object adapters can easily be

attached to the ORB - even at runtime using loadable modules,
• It offers an interface for inserting and extracting constructed types that were not

known at compile time,
• Full BOA implementation, including all activities modes, support for object

migration, object persistence and the implementation repository,
• BOA can load object implementation into clients at runtime using loadable

modules.

3 Application Design Using U_CORBA

The presented tool helps CORBA users in developing CORBA applications (servers
and clients) by generating the skeleton of the application by means of IDL files and
application C++ headers. A specially designed graphical interface gives the user
opportunity of creating the application class diagrams using UML notation and based
on it generating the IDL and application C++ header files. The tool is equipped with
an embedded user's editor for writing application body. The main window of the
application containing three parts is presented in figure 2. On the top there is a popup
menu. First part of the menu gives the basic editor functions like creation of the new

m Diagram 1 _ n x

File Edit View Diagram £ode: Help

;:;D^y::@.//:::^l

Fig. 2. The main window of U_CORBA tool

diagram, opening of the saved diagram, saving prepared diagram, printing the
diagram and quitting the tool applications. Options for opening, saving and printing
open the standard dialogs for choosing the files and printers. Then there is the group
of options for editing the documents containing such common used functions like:
Cut, Copy, Paste, etc. The View option allows modifying the appearance of the tool

-96-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

on the screen. The specific functions of the tool are accessible using Diagram and
Code options. Using the Diagram option the user can create a class diagram and when
using the Code option can generate IDL files and C++ application headers and writes
the body of an application. Every option starts the specific action for the chosen
functionality to be performed. For example New Class from Diagram option opens
the dialog in which the information about the new class is collected.

The toolbar contains iconic shortcuts for a couple of the menu options. Starting
from the left side there are:
• New Diagram - creates the new application diagram,
• Open - starts the open file chosen dialog
• Save - saves editing diagram,
• New Class - starts the new class dialog,
• New aggregation - inserts the new aggregation,
• New Generalization - inserts the new generalization,
• Help - gets the information about accessible options.

diagram X

Name of the class OK

NewClass

List of attributes

Cancel

Add

List of operations

Add

Fig. 3. The New Class dialog window

Next part of the main window in the central widget where the diagram is draw. The
appropriate way of drawing the elements of the diagram is the standard described by

-97-

FEUP - Faculdade de Engenharia da Universidade do Porto

the OMG. When the new class is inserted to the diagram the set of dialogs is used to
collect information about class properties (figure 3).

This dialog contains the line editor for the name of the class specifying two list
boxes that contain all the attributes and operations. The attributes and operations are
performed by the set of buttons (Add, Edit, Delete), All actions performed in the
dialog can be confirmed by the OK or discarded by Cancel buttons, respectively.
After adding or editing the list of attributes or operations, a new dialog box is opened
for attributes or operations specification. In the attribute dialog box (figure 4) the
information about attribute properties is collected. The combo boxes provide the set
of choices for the attribute type and export control. The default type is set to "int" and
export control to "private". A similar dialog box is defined for operations. Theirs
functionality is similar to the one described in the Attribute dialog. The default
operation type is set to "int" and export control to "public".

diagram <Z-

Attribute Name OK

Name I
Cancel f

Attribute Type

int

Attribute Export Control

private

Fig. 4. The Attribute dialog window

In contrast to other available in CASE tools code generators our CORBA IDL
generator (Code option) produces only CORBA IDL specification and C++ headers
files. To produce executable code after translation of IDL files to architecture specific
C++ headers and building the implementation using programmer editor the source
code of the application is ready to compilation.

Presently the tool covers only a part of the functionalities that are normally
supported by CASE tools, however experiments performed using our prototype
indicate that it is useful during the design of CORBA applications. The prototype is
being extended to support all functionalities required by a full development process.

-98-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

4 Some Implementation Details

Presented in the paper tool consist of two parts, the management and development
tools. The management tool allows a user an easy visualization of the state of the
CORBA environment as well as of managing it and the development tool supports the
process of design the CORBA application by drawing the class diagram and
generating the IDL files and application C++ headers. Figure 5 gives an overview of
the U_CORBA environment layers, arrows indicate the communication between
different environment components. Tools do not directly call the system or MICO
services. The manager tool operates on the MICOs Implementation Repository (IR)
through the program provided in the MICO package, which is called "imr" and calls
the routines from the QT libraries for graphics and from "imr" for operations on the
IR. The class diagram that represents the tool functionalities cooperates only with the
QT library since it provides all the required functionality. The main tasks of the
manager are:
• The management of the implementation repository daemon,
• The management of entries into the implementation repository,
• Visualization of the current status of implementation repository daemon.

imr —►
4—

Manager Class
Diagram

T

' ** tv
MICO 2.2.5 NJ QT 1.44

i

Linux Kernel 2.2.5

Fig. 5. Layers of U_TOOL

There are two main problems that appear during developing tool implementation:
definition of the data structures for class diagram representation and the translation
grammar for the application C++ headers and IDL code generation.

The attribute name and type describe the class attributes. The name is stored in the
string and the type can be set to one of many possible options. That set includes the
most popular types like int, float, string, char, etc. The class abstracting the attribute
has to be equipped with the copy constructor and overloaded assignment operator for
the handling of these structures is not just the question of bit to bit copy. Such
solution gives the opportunity of future tool development. Considering attributes in
context of the OOP one more feature has to be added - a visibility. Visibility specifies
the way of accessing the attributes. The name, type, and list of attributes and visibility
describe the operations. Name, type and visibility describing operations are stored in
similar way as for attributes, but the list of attributes causes more problems. It can be

-99-

FEUP - Faculdade de Engenharia da Universidade do Porto

empty or the number of eventual attributes is unknown. Then operation attributes are
stored in the list. The list contains only the pointers to the objects. That requires a lot
of caution while processing the entities of operations. The list itself is hold by the type
provided by the Qt toolkit.

The code is generated for the specific class on the class diagram. The name of that
class indicates the name of the file. Different suffixes are added depending on the file
type generating * Ml for the IDL files and *.h for the application C++ headers. The
process of file generation is divided into three steps. In the first step the class name
using the above described procedure is established. During the second step
information about the links between classes is retrieved from the association database
created from the class diagram, it causes some extra lines of code at both generated
files. In the last step the analysis of attributes and operations is performed. As long as
the number of used types for the attributes or operations is limited to the basic ones
the process of generation of both files is not complicated. However the generation of
application C++ headers for complex types is not so obvious, usually attributes and
operations belonging to the one type of visibility are grouped in one place, and
depending on the convention those groups are placed in different places in the
generated header file. We assume that for the more clear declaration reading the
group with public visibility comes first.

5 An Example of Using U_CORBA

To present the functionalities provided by a tool, we present the following two simple
examples. Let's consider the simplified version of a bank account server. It is
responsible for managing a user account by depositing and withdrawing the required
sum of money, and reporting about the current state of the account only.

si Diagram 1

File Edit View Diagram Code
;:; D G» Hiilja. S >|;:|*?|

BankAoaount BankClient

int
ajacountNumher
string userName
float balance

string name

int deposit
(float amount)
int withdraw
(f loat ajnount)
float report ()

int takeCredit
(float amount)

Fig. 6. Class diagrams for the server and client respectively

100-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

The server needs to hold some information, like current balance, account
identification number, etc. Let's assume that a bank client is interested in obtaining
the credit. Then both of them can be represented as objects in CORBA environment
as presented in figure 6.

After defining both class diagrams using the implemented graphical environment
using Code option the IDL files and C++ application headers for server and client are
generated.

The IDL files generated for the server and client respectively are presented below.

interface bankAccount
{
attribute long accountNumber;
attribute string userName;
attribute float balance;
long deposit(in float amount);
long withdraw(in float amount);
float report();

}
interface bankClient
{
attribute string name;
long takeCredit(in float amount);

}

The application C++ headers generated for the server and client respectively

class bankAccount
{
private:

long accountNumber;
string userName;
float balance;

public:
long deposit(float amount);
long withdraw(float amount);
float report();

}
class bankClient

{
private:

string name;
public:

long takeCredit(float amount);
}

After translation of generated IDL files to the architecture specific C++ headers the
user can start to build the implementation of the server and client behavior using the
Code option of the tool (programmer editor).

As a second example let's consider the management system of relational database
(RDBMS). The class diagram for an example is presented at figure 7. The
management system consists of some servers (DB) distributed among the different
computers (multiserver). Used at the diagram the diamond symbol represents
aggregation, when a triangle symbol represents inheritance.

-101-

FEUP - Faculdade de Engenharia da Universidade do Porto

BJDiagi-am 1 IRflixj
iSlB idit 3Öew ßisgram £otäe -:Betp"

toi^e.'H^^ IV

Table

OracleTaUe MSTable

DBOrade DBMSSQ1

Steady. ^

Fig. 7. Class diagram for DBDMS system

The way of data partitioning between different servers can be vertical or horizontal
and data can be additionally replicated. Transactions in such distributed environment
are of two types: queries, which involve request for information and updates, which
generate changes to the data entries in the database. The queries can be proceeded
locally or it may be necessary to access remote sites. Then the "SQL module"
represents the CORBA client. Different CORBA objects (databases, tables) can be
moved in the whole distributed environment (middleware interface).

The part of generated by the tool IDL file for the above described database
management system is presented below.

{
module RDBMS

// abstract table
interface Table
{
attribute string strName;
attribute boolean Temp;
void addRow(in long ISpace)
};

// name of the table
// flag for temp, sector
// space for the new row

// abstract database
interface DB
{
attribute string strName; //
attribute Table intfcTable[]; //
void ClearTempSector(); //

cleans the temporary sector of the database
void AllocateSpace(in Table forTable); // allocates

physical space

name of the DB
set of Tables
operation that

102-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

interface DBMSSQL : DB
{
attribute boolean bAllowTruncate; // flag to allow

truncation of the objects (like table)
void setTruncate(in boolean yesno); // allow or

disallow
};

};

6 Comparing U_CORBA with Other Tools

The main aims of using development-supporting tools can be pointed by:
• Accelerating the development time, by improving communication among various

team members,
• Improving quality, by mapping business processes to software architecture,
• Increasing visibility and predictability by making critical design decisions explicit

visually.
Comparing our tool with other available tool we can conclude that its

functionalities with respect to supporting the CORBA application development
process is comparable. In Rational Rose some functions supporting the CORBA 2.2
application development are included. It supports forwarded and reverse engineering
of CORBA IDL. It supports CORBA specific function such as; Stereotypes,
Constants, Enums, Exceptions, Interfaces, Structs, Typedefs and Unions. It includes a
built-in color-coding editor, which allows editing of IDL syntax files from within
Rose 98 [7]. Similar functionalities can be found in COOL-Jex, which support
developing of CORBA application by generating IDL files for forwarded as well as
for reverse engineering [9]. From the other hand the whole functionalities such tool
like Rational Rose is much wider and include component-based development, multi-
language development, UML modeling, etc. The main advantage of using our tool is
that it supports not only developing process but also some useful CORBA
environment management functions are provided.

7 Conclusions

This is an ongoing project. Presently we finished building a prototype. The
prototype still misses a lot of features that could be implemented in the further
versions. However, experiments performed using our prototype indicate that the
presented tool will be useful for designing CORBA applications. No specific
knowledge about the IDL language is required to build CORBA objects. After
translation of the IDL files to the architecture specific C++ headers the user can start
to build the implementation of the server/client behavior. The tool helps the developer
out in IDL knowledge and allows him to concentrate on the essential part of
implementation. The decision of using 00 Technology for coding and a GPL

103-

FEUP - Faculdade de Engenharia da Universidade do Porto

implementation of the CORBA system will contribute to ease the implementation of
the full set of desired functionality. Moreover, those decisions make the development
of further aspects and kinds of experiments possible, since all layers of the
implementation are accessible. Having the Rose tool so sophisticated and supporting
so many features and recently also ported to the Unix systems, the question about the
motivation of building other tool with a similar functionality arises. With a tool
released under the General Public Licence it is possible to freely access the code,
develop new features and made it more efficient. The dedication to the MICO that we
have followed in this project allows taking some benefits and widening the
functionality to areas that are not possible for a tool that is so general like Rose. That
all opens a chance for a flexible support for developers that are not capable of
obtaining the commercial expensive tools.

References

1. Baker S., "Distributed Objects using Orbix", Addison-Wesley, 1997
2. Erikson H., Penker M., „UML Toolkit", John Wiley & Sons, Inc., 1998
3. Douglass B., „Developing Real-Time Systems with UML, Objects, Frameworks, and

Patterns", Addison-Wesley, Inc. 1999
4. Newton P, Dongarra J., „Overviev of VPE: A Visual Environment for Message-Passing

Parallel Programming", http://www.netlib.org/tennesse/ut-cs-94-261 .ps
5. OMG, „The Common Object Request Broker: Architecture and Specification - OMG IDL

Syntax and Semantics" 1998
6. Puder A,. „MICO Online Documentation", 1999
7. Rational Software Corporation - Rational Rose 98 Help
8. Siegel J., „CORBA Fundamentals and Programming", John Wiley & Sons, Inc., 1996
9. Sterling Software Corporation - COOL :Jex Help
10. Tanenbaum A., „Distributed Operating Systems", Prentice Hall, 1995
11. Zomaya A., Parallel and Distributed Computing Handbook, McGraw-Hill, 1996

-104-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Parallel Performance of Ensemble
Self-Generating Neural Networks

Hirotaka Inoue and Hiroyuki Narihisa

Department of Information & Computer Engineering, Faculty of Engineering,
Okayama University of Science,

1-1 Ridai-cho, Okayama 700-0005, Japan
{inoue, narihisa}<Bice. ous.ac.jp

Abstract. In this paper, we investigate the improving capability of ac-
curacies and the parallel efficiency of ensemble self-generating neural
networks (ESGNNs) for classification problems and the time series pre-
diction on a MIMD parallel computer. The results of our computational
experiments show that the more the number of processors increases, the
more the improvement of the accuracy is obtained for all problems, and
the parallel efficiency is obtained for all problems.1

1 Introduction

Neural networks have been widely used in the field of the intelligent information
processing such as classification, clustering, prediction, and recognition. Gen-
erally, neural networks have to be decided the network structures and some
parameters by human experts. It is quite tricky to choose the right structure of
neural networks suitable for a particular application at hand. In order to avoid
these tricky and difficult situations, self-generating neural networks (SGNNs)
are focussed an attention because of their simplicity on networks design [1].
SGNNs are some kinds of extensions of the self-organizing maps (SOMs) of Ko-
honen [2] and utilize the competitive learning algorithm which is implemented
as a self-generating neural tree (SGNT).

The SGNT algorithm is proposed in [3] to generate a neural tree automati-
cally from training data directly. Originally, this SGNT algorithm is developed as
a hierarchical clustering algorithm. Therefore, it may be a natural consequence
to show a good performance in applying to the classification or clustering prob-
lems. In our previous study concerning the performance analysis of the SGNT
algorithm [4], we showed that the main characteristic of this SGNT algorithm
was its high speed convergence in computation time but it was always not best
algorithm in its accuracy comparing with the existing other feed-forward neu-
ral networks such as the backpropagation (BP) [5]. In order to acquire more
higher accuracy of SGNNs, we introduced the ensemble averaging approach to

Candidate to the Best Student Paper Award

-105-

FEUP - Faculdade de Engenharia da Universidade do Porto

improve the generalization capability of SGNNs which is fully utilize the high
speed convergence characteristic of the SGNT algorithm [6].

In this paper, we investigate the improving capability of accuracies and the
parallel efficiency of ensemble self-generating neural networks (ESGNNs) for clas-
sification problems and the time series prediction on a MIMD parallel computer.
We analyze MONK's [7] problems in classification and the Mackey-Glass time
series [8] in time series prediction which are given as benchmarks.

This paper is organized as follows: Section 2 outlines the learning system
on neural networks and describes accuracies as criteria for evaluation for clas-
sification and time series prediction. Section 3 describes SGNNs. In Section4,
we combine the ensemble averaging method with the SGNN model in order to
improve the generalization capability. In Section 5, we present how to perform
the ESGNN on the parallel computer. Section 6, we describe experimental de-
tails. Section 7 is devoted to investigate the improving accuracy and parallel
performance for ESGNNs through a simulation study, and Section 8 concludes
the paper with some remarks.

2 Learning System and Accuracies

A training data set D consists of data {(xi, yi), i = 1,..., N} and a test data
set T consists of data {(xi,yi),i = 1,...,M}. Here, Xi is the input and yi is
the desired output, and factors of D and T are independent of each other. The
learning task is to construct a learning system from this training data set D
in order to classify/predict y by the output of this learning system f(x) for
system input x. After constructing the learning system, then the accuracy of
this learning system is evaluated by the test data set T (see Fig. 1). Next, we
show how to evaluate the performance of the learning system for classification
and time series prediction, respectively.

In classification, the objective of the learning system is to classify success-
fully on the test data set T. The input data X; corresponds to the discrete
p-dimensional attributes vector and the output y, corresponds to a class label,
for {Xi,yi) G T. If f(xi) and yi are the same label, this case may be considered
to be success, otherwise failure. Therefore, the accuracy of this learning system
is evaluated by counting these success and failure cases for a given test data.
The most commonly used criterion for the accuracy of classification system is
misclassification rate which is the ratio of the number of failures to the number

desierd output

learning
system input data

accuracy

Fig. 1. Functional diagram of the learning system

106-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

of test data as follows:

, . number of failures . .
misclassmcation rate = : : :— . (1)

number ot test data

In this paper, we use above defined misclassification rate.
In time series prediction, the objective of the learning system is to predict the

future on the test time series data set T. The input data Xi involves processing
of patterns that evolve over time. In neural networks prediction, temporal infor-
mation of the series data is spatially brought to the network by a p-dimensional
time-lagged vector;

Xt+L = f(Xt,Xt-m, ■■, Zt-(p-l)m) i (2)

where xt+L is the approximation of the real time series data xt+L on time t + L.
Here, xt+L is corresponding to the desired output yt for x,. As a criterion for time
series prediction system, we use the following ARV (average relative variance)
which is commonly used in this time series prediction community [9],

ARV = £,6r(w-E[yi])2 ' (3)

which is the mean squared error (MSE) divided by the variance of desired outputs
on the test data set T. Here, E is the expectation value on statistical sense, j/j
is the real time series data and /(#») is the output of the learning system,
respectively.

3 Self-Generating Neural Networks

SGNNs proposed in [3] are based on SOMs and traditional AI unsupervised
learning methods such as COBWEB [10]. SGNNs are implemented as a self-
generating neural tree (SGNT) architecture. Generally, the SGNT algorithm
has no learning parameters. The structure of the SGNT changes dynamically
in training. The SGNT algorithm decide the structure of the SGNT after all
training data are added in leaves of the SGNT.

The SGNT algorithm is defined as a tree construction problem how to con-
struct a tree structure from the given data which consist of multiple attributes
under the condition that final leaf neurons correspond to the given data. Before
we describe the SGNT algorithm, we denote some notations.

— input data vector : e*; e$ = (en, e^, • • ■, ejP).
— j-th neuron : ny, rij is expressed as ordered pair (WJ,CJ).

— weight vector of rij : Wj\ Wj = (WJI,WJ2, ■ ■ ■, Wjp)-
— the number of the leaf neurons in rij : Cj.
— tree is expressed as ordered pair ({rij}, {Ik}), where {rij} is the neuron set

and {Ik} is the link set of the tree.
— distance measure : d(ej,Wj); we use Euclidean distance measure.

107-

FEUP - Faculdade de Engenharia da Universidade do Porto

— winner neuron for e; : nWin.

The SGNT algorithm is a hierarchical clustering algorithm. The pseudo C
code of the SGNT algorithm is given as follows:

Algorithm (SGNT Generation)

Input :
A set of training examples E = {e_i}, i = 1, ... , N.
A threshold value XI >= 0.
A distance measure d(e_i,w_j).

Program Code :
copy(n_l,e_l);
for (i = 2, j = 2; i <= N; i++) {

n_win = choose(e_i, n_l);
minDistance = distance(e_i, w_win);
if (minDistance > XI) {

if (leaf(n_win)) {
copy(n_j, w_win);
connect(n_j, n_win);

}
copy(n_j, e_i);
connect(n_j, n_win);

}
update(e_i, w_win)

Output :
Constructed SGNT by E

In the above algorithm, some sub procedures are used. Table 1 shows the sub
procedures of the SGNT algorithm and their specifications.

In order to decide the winner neuron nwin, competitive learning is used. If
a rij includes the nWin as it's descendant in the SGNT, the weight Wjk (k =

Table 1. Sub procedures of the SGNT algorithm

Sub procedure Specification
copy{nj,ei/wwin) Create nj, copy attributes of ei/wWin as weights Wj in rij.
distance(ei,Wj) Compute d(e.i,Wj).
choose(ei,ni) Decide nWin for e,.
leaf(nwin) Check nWin whether nWin is leaf or not.
connect(nj ,nWin) Connect nj as child neuron of nWin.
update(ei,Wj) Update Wj of nj.

108-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

1,2,... ,p) of the neuron rij is updated as follows:

Wjk = Wjk + ——7 ■ (e,fe - uijk). (4)
Cj •+- i

After all training data are inserted into the SGNT as leaf neurons, the weights
of each node neuron rij is the averages of the corresponding weights of all its
children. The whole network of the SGNT reflects the given feature space by it's
topology.

In the SGNT, the input data x, corresponds to ej, and the desired output x/i
corresponds to the network output o* which is stored in one of the leaf neuron,
for (Xi,yi) € D.

In the testing process, the input data X\ is entered the root neuron of the
SGNT as e,. Then the input data are reached one of the winner leaf neuron nWin

of the SGNT through competition, and the desired output y, is compared with
the network output oWin in order to evaluate the accuracy of the SGNT. , for
(xi, j/i) G T. Note that though the competitive learning of the training process is
performed among a parent and it's children recursively, the competitive learning
of the testing process is performed among only children recursively.

4 Ensemble Averaging

SGNNs have some abilities as follows:

— fast learning,
— learning stability,
— good mapping of given input data in the tree structure.

However, because of SGNT algorithm is originally based on an unsupervised
learning method, the accuracy of the classification/prediction is not so good as
feed-forward neural networks which are implemented as a supervised learning
method like BP.

In order to acquire more higher generalization ability, we adopt ensemble
averaging method [11] to SGNNs. The ensemble averaging method is based on
statistic theory. This method proofed as following theories in [12]:

1. The bias of the ensemble averaged output, pertaining to the ensemble, is
exactly the same as that of the output pertaining to a single neural network.

2. The variance of the ensemble averaged output is less than that of all single
neural network.

Here, the bias and the variance are decomposition components of MSE as fol-
lows [13]:

MSE = B + V; (5)

B = (ED[f(x)}-E[y\x})2, (6)

V = ED[f(x)-ED[f(x)]% (7)

109-

FEUP - Faculdade de Engenharia da Universidade do Porto

Input
D

JL
Shuffler|

SGNT ;
1 I

3E
Shuffler|

is:
SGNT

2

Expert 1 Expert 2

1L
Shuffler iiz
SGNT

K

Expert K

Fig. 2. Ensemble of K SGNTs (training process). One expert corresponds to one
SGNT, the shuffler makes shuffle elements of input data

Input
r

&
SGNT

1

af
SGNT

2

TL

1
SGNT

K

Ü
Combiner

Output

Fig. 3. Structure of the ensemble system (testing process)

where E is the expectation value on statistical sense , B is the bias decomposition
of MSE, and V is the variance decomposition of MSE. These theories means that
the overall error produced by an ensemble model are improved by averaging the
output of all single network in the ensemble model.

Next, We describe how to make the ensemble SGNNs model. This model can
separate a training process and a testing process. In the training process, we
define "shuffler" to shuffle the set of input data D. Fig. 2 shows the structure
of the ensemble system including K SGNTs on a training process. The set of
all input training data D enters each SGNN through each shuffler. The shuffler
makes shuffle elements of D at random. All SGNTs are generated by adopting
the SGNT algorithm. After the training process, various SGNTs are generated
independently.

In the testing process, the set of test data T is entered this ensemble model.
Fig. 3 shows the structure of the ensemble system including K SGNTs on the
testing process. Each output vector Ok G 5RM denotes the output of the expert
k for the set of test data T. Here, M denotes the number of test data. The
output of this ensemble model is computed by averaging the each expert output
as follows:

- K

O =
K

2^ok. (8)
fc=i

-110-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

In this paper, we adopt the ensemble model to three binary classification
problems and the time series prediction. Considering the classification problems,
in order to classify each test data, corresponding output Oj(i = 1,...,M) is
evaluated as follows:

Oj > 0.5 : Classl,

Oi < 0.5 : ClassO.

5 Parallelization of ESGNNs

Because of each expert of ESGNNs can train and test independently, the ES-
GNNs model has a possibility of the parallel computation at the training process
and the testing process. Hence, we allocate each of experts to each of proces-
sors on the MIMD computer. The procedure of the parallelization of ESGNNs
is presented as follows:

Stepl: In a master processor, read the training set D and the test set T in the
disk.

Step2: In the master processor, broadcast D and T for all K—1 slave processors.
Step3: In all processors, generate the SGNT from D, then test the SGNT using

T, and compute the Ok independently.
Step4: In all processors, each output Ok for T is collected in the master proces-

sor by all to one communication.
Step5: In the master processor, compute o by Eq. (8) and write to the disk.

Because of the number of the communications between the master processor
and each slave processor is only two times (Step2 and Step4), the parallel effi-
ciency is approximately expected the linear speedup. (See Fig. 4) In our case, all
computations are performed on the Intel Paragon (Paragon XP/S15). This is a
distributed memory multicomputer, and the architecture is multiple instruction
multiple data (MIMD). The Paragon we use has 296 processors. Each processor
is Intel i860XP (50MHz). The network topology of the Paragon is adopted the
two-dimensional mesh.

Parallel process

Time

Fig. 4. Parallelization of ESGNNs

- Ill

FEUP - Faculdade de Engenharia da Universidade do Porto

6 Experimental Details

We allocate a SGNT to each of processors on the Paragon, and compute 100
trials for each single/ensemble model. The number of processors (SGNTs) K
for the ensemble averaging is changed from 1 to 30 (1,2,3,4,5,6,7,8,9,10,15,20,25,
and 30), and the threshold value £ is 0 for each SGNT algorithm. Because of
the redundancy reduction, we repeated 100 trials from Step3 to Step5 in prior
section continuously. Generally, the parallel efficiency e is defined as follows:

,= 2ffi, <•>
where S(K) stands for the speedup, and K is the number of processors. In this
paper, we adopt the scaled speedup which is given in [14] to evaluate the parallel
efficiency as follows:

S(K) = Ps + PPK , (10)

where Ps and Pp represent the fraction of the program which is performed in
serial and parallel, respectively.

In order to investigate the parallel performance of ESGNNs, we apply to three
classification problems (MONK's [7]) and the time series prediction (Mackey-
Glass time series [8]). Next, we describe the brief explanation of these problems.

6.1 Classification Problems

MONK's problems [7] are widely used as the benchmark problems. The learning
task of the MONK's problems is a binary classification task. Table 2 shows six
discrete attributes of MONK's problems. Each of them is given by the following
logical description of a class.

- Problem M\\ (head-shape = body .shape) or (jacket-color = red). From 432
possible examples, 124 were randomly selected for the training set. No noise
was present.

- Problem M?- Exactly two of the six attributes have their first value. From
432 examples, 169 were selected randomly. No noise was present.

Table 2. Six abilities of the MONK's problems

x\\ head-shape 6 round,square,octagon;
X2'- body-shape £ round,square,octagon;
X3: is-smiling € yes, no;
X4: holding € sword,balloon,flag;
X5: jacket_color € red,yellow,green,blue;
xe- has-tie 6 yes,no;

112-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Fig. 5. Mackey-Glass time series from x(0) to x(500)

- Problem M3: (Jacket-color is green and holding a sword) or (jacket-color
is not blue and body-shape is no octagon). From 432 examples, 122 were
selected randomly. And among them there were 5% misclassification, i.e.
noise in the training set.

6.2 Time Series Prediction

We generate chaotic time series from the differential equation of Mackey-Glass [8]
which is used by many researchers as follows:

dt w l+x{t- \io (11)

with a = 0.2, b = 0.1, x(0) = 0.0, and r = 17. The input time-lagged vector
Xi is (xt,Xt-m,xt-2m,Xt-3m), and the desired output y* is xt+L- In this paper,
m is 6 and L is 85. The training data set is used from t=0 to t=500 (Fig 5).
Table 3 shows the relation between the input data a;, and the desired output in
on training data set. The data from t=10000 to t=20000 are used for testing.

Table 3. Relation between the input data cc» and the output data in on training data
set

Vi

482
483

(£18, £12, xe,xo)

(xi9,Xi3,X7,Xi)

(X20,Xu,Xg,X2)

(Z499, 2493, X487,ai48l)

(g500, £494,0:488, 3:482))

2:103

2:i04

2:105

3:584

2:585)

113-

FEUP - Faculdade de Engenharia da Universidade do Porto

7 Experimental Results

Fig. 6, Fig. 7, and Fig. 8 show the influence of the number of processors on
misclassification rate (%) for MONK's problems Mi, M2, and M3 respectively.
Misclassification rates are improved by computing the ensemble averaging of
various SGNTs for all problems. On an average, these misclassification rates
are improved respective 5.7%, 1.8%, and 4.1% in the case of the K is 10, and
respective 6.7%, 2.1%, 4.4% in the case of the K is 30, for Mi, M2 and M3.
The performance of the improving classification accuracy is saturated over 20
processors for all problems.

In the time series prediction, the influence of the number of processors on
ARV for the Mackey-Glass time series is shown in Fig. 9. The result shows
that the more the number of processors increases, the more ARV is improved.
The improving efficiency is gradually saturated by increasing the number of
processors same as classification problems.

The results of the bias/variance decomposition of MSE show some interesting
associations between ARV and the number of processors. In order to illustrate
that the tendency of the improvement of ARV, we compute the bias (B) and
the variance (V) decomposition of MSE which are given by Eq.(6), Eq.(7) re-
spectively for all cases (Fig. 10). We use the results of all 100 trials which are
obtained from the same training data set D for evaluate B and V. Fig. 10 shows
that though B is continue at the same level, V decreases. Hence, MSE and ARV
decrease same tendency of V, and approximate B gradually in the case of the
number of processors increases. Hence, the improvement of ARV is gradually sat-
urated. It seems that the effect of the improvement of misclassification rate for
classification problems is saturated for the same explanation as we have shown
above.

Fig. 11 shows a part of prediction results between #15103 and X152032 as an
example of the relation between real time series and its predictions in the case of
K is 1, 10, 30 respectively. Using the ensemble averaging of various SGNNs, the
prediction output /(a;,) is approximated to the real Mackey-Glass time series y*
in almost cases.

Table 4 shows the computation time (CT, in sec.) and the speedup (S(K)) for
classification problems (Mi, M2, M3), and time series prediction of the Mackey-
Glass time series (MG). Here, the computation time is the total processing time
of 100 trials. The results show that the parallel efficiency is approximately ob-
tained the liner speedup for all problems, and the results of the time series
prediction is a better speedup than three classification problems.

It is concluded that our method could improve the generalization capability
by allocating each of SGNTs to each of processors, go on maintaining the high
speed processing property of the single SGNN.

2 They are taken in the time interval between t — 15000 and t = 15118 as input test
data.

- 114-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

10 15 20

Number of processors

Fig. 6. Influence of the number of processors on misclassification rate (%) for Mi

10 15 20

Number of processors

Fig. 7. Influence of the number of processors on misclassification rate (%) for A/2

22

20

£ 18
o re
I 16
flj

I 12

10

10 15 20

Number of processors

Fig. 8. Influence of the number of processors on misclassification rate (%) for M3

US-

FEUP - Faculdade de Engenharia da Universidade do Porto

10 15 20

Number of processors

Fig. 9. Influence of the number of processors on ARV for the Mackey-Glass time series

0.016 ' ' ■
1

0.014 .% V -
MSE ■

......

0.012

0.01 ' 9 j^ ■

0.008 , \ ■

0.006

-
\

0.004 \
0.002 -» ■

0
r..

3 6 10 16 20 25 3

Number of processors

Fig. 10. Relation between error (B, V, and MSE) and the number of processors for
the Mackey-Glass time series

1 ' _
K:1 (ARV=0.237) —•■

1.3 A Ji
K;10(ARV=0.1021 -*■
K:30 (ARV=0.084) -T-

1.2
1

f * m
if I

\x

0.9 M I

j> | *
X 11 y

W-? . ftp
$L ** '' il ?

0.8 *6

0.7 .
i fl ■

0.6

0.5 ■

0.4 64 C6

Fig. 11. A part of prediction results for the Mackey-Glass time series (K = 1,10,30)

116-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Table 4. Computation time (CT), and speedup S(K) as a function of the number of
processors K for Mi, Mi, Mz and the Mackey-Glass time series (MG)

M l M2 M3 MG
K CT (sec.)S(K) CT (sec.)S(K) CT (sec.)S(K) CT (sec.) S(K)
1 13.08 1.00 15.66 1.00 13.46 1.00 256.43 1.00
2 13.44 1.92 16.09 1.89 14.33 1.92 262.26 1.87
3 13.69 2.81 16.36 2.74 14.89 2.80 266.85 2.72
4 13.85 3.68 16.53 3.58 15.41 3.66 262.82 3.61
5 13.96 4.55 16.76 4.41 14.44 4.52 264.01 4.47
6 14.05 5.40 16.80 5.23 14.56 5.36 263.48 5.36
7 14.10 6.24 16.86 6.04 14.61 6.20 263.87 6.23
8 14.18 7.13 16.90 6.87 14.75 7.02 263.86 7.09
9 14.31 7.91 17.03 7.58 14.83 7.82 265.54 7.91
10 14.38 8.72 17.10 8.41 14.91 8.63 265.12 8.79
15 14.58 12.82 17.34 12.35 15.10 12.67 266.64 13.07
20 14.70 16.87 17.54 16.23 15.22 16.71 267.38 17.32
25 14.88 20.84 17.56 20.12 15.29 20.69 268.18 21.54
30 14.93 24.97 17.61 24.02 15.34 24.84 268.65 25.80

8 Conclusions

In this paper, we presented the parallel performance of ESGNNs for classification
problems and time series prediction on the MIMD parallel computer. From the
experimental results the following conclusions can be drawn:

- The improvement of the classification/prediction accuracy is expected by
using various SGNTs which are allocated processors on the MIMD computer.

- The parallel efficiency is approximately obtained linear speedup for all prob-
lems.

Acknowledgements

The authors would like to thank the referees for their helpful comments and the
Information Processing Center in Okayama University of Science for using the
Paragon.

References

Wen, W. X., Pang, V. and Jennings, A.: Self-Generating vs. Self-Organizing,
What's Different? In: Simpson, P. K. (eds.): Neural Networks Theory, Technol-
ogy, and Applications. IEEE, New York (1996) 210-214
Kohonen, T.: Self-Organizing Maps. Springer-Verlag, Berlin (1995)
Wen, W. X., Jennings, A. and Liu, H.: Learning a Neural Tree. In: Int. Joint Conf.
on Neural Networks. Beijing (1992) 751-756

117-

FEUP - Faculdade de Engenharia da Universidade do Porto

4. Inoue, H. and Narihisa, H.: Performance of Self-Generating Neural Network Ap-
plied to Pattern Recognition. In: 5th Int. Conf. on Information Systems Analysis
and Synthesis, Vol. 5. Orlando, FL (1999) 608-614

5. Rumelhart, D., Hinton, G. E. and Williams, R. J.: Learning Internal Represen-
tations by Error Propagation. In: Rumelhart, D., McClelland, J. and the PDP
Reserch Group (eds.): Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition. MIT Press, Cambridge, MA (1986) 318-362

6. Inoue, H. and Narihisa, H.: Improving Generalization Ability of Self-Generating
Neural Networks through Ensemble Averaging. In: The Fourth Pacific-Asia Conf.
on Knowledge Discovery and Data Mining. Lecture Notes in Computer Science,
Vol. 1805, Springer, Berlin (2000) in press.

7. Thrun, S. B. et al.: The MONK's Problems — A Performance Comparison of
Different Learning Algorithms. Technical report CMU-CS-91-197. Carnegie Mellon
University (1991)

8. Mackey, M. C. and Glass, L.: Oscillation and Chaos in Physiologist Control Sys-
tems. Science 197 (1977) 287-289

9. Weigend, A. S., Huberman, B. A. and Rumelhart, D. E.: Predicting the future: A
connectionist approach. Int. J. of Neural Systems 1 (1990) 193-209

10. Fisher, D. H.: Knowledge Acquisition via Incremental Conceptual Clustering. Ma-
chine Learning 2 (1987) 139-172

11. Haykin, S.: Neural Networks: A comprehensive foundation. Prentice-Hall, Upper
Saddle River, NJ, second edition (1999) 353-355

12. Naftaly, U., Intrator, N. and Horn, D.: Optimal Ensemble Averaging of Neural
Networks. Network 8 (1997) 283-296

13. Geman, S., Bienenstock, E. and Doursat, R.: Neural Networks and the
Bias/Variance Dilemma. Neural Computation 4 (1992) 1-58

14. Pardalos, P. M., Phillips, A. T., Rosen, J. B.Topics in parallel computing in math-
ematical programming. Science Press, New York (1992) 5-6

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

An environment to learn concurrency

Giuseppina Capretti, Maria Rita Laganä and Laura Ricci

Universitä degli Studi di Pisa, Dipartimento di Informatica, Corso Italia 40,
56125 Pisa ITALIA

{capretti, lagana, ricci] @di.unipi.it

Abstract: The paper describes the Orespics system, a tool defined to learn the basic
concepts of concurrency. Orespics defines an imperative language by putting together
the primitives of the Logo language turtles and a set of concurrent constructs. We
show that the system may be employed to plan didactic trainings in order to teach the
basic concepts of concurrent programming: in particular we show a course to learn
the semantics of different types of communication primitives.

1 Introduction

Recently, the educational challenge of teaching parallel programming has acquired
great importance: our teaching experience shows that students find several difficulties
in understanding and learning the concurrent paradigm even if the world where we live
and work is naturally concurrent.

We think that this situation is due to the way in which the concurrent paradigm is
usually presented in our high education courses, where students have their first
experience in concurrency through the programming of operating systems or of
complex scientific applications.

We believe that this experience should be acquired at an earlier age, through
simpler and friendlier programming environments. Our idea is to define an
environment where the students may create micro-worlds, i.e. virtual worlds populated
by creatures interacting through the exchange of messages.

We have chosen the paradigm of message exchange because we believe that it
simulates naturally the anthropoids communication. Futhermore single system
including both the message passing paradigm and the shared memory one is feasible
but not suitable for didactic purposes. Some didactic principles establish that the
learning is more valid if it follows a sequence of consolidated steps, where each step
corresponds to the acquirement of a well defined concept. According to them, we avoid
to mix the message passing paradigm with the shared one in a single didactic
environment because this could introduce confusion in the learning process.
Furthermore no standard definition of the shared memory paradigm has been given till
now: the proposed models differ one another for the adopted consistency model [9].

The system we propose may be considered an agent one [16], where each agent is a
process and is programmed through a language integrating the Logo [6] turtles
movement primitives in an imperative concurrent language: the students may analyse
the interactions of processes through an inspection of the evolution of the virtual
creatures on the screen.

-119-

FEUP - Faculdade de Engenharia da Universidade do Porto

As our fundamental choice, the language we have defined is very close to Pascal
and the communication primitives are stripped out the versions of the MPI library [11]
so the knowledge acquired through our system may be useful in the students' future
life. On the other hand, as stated above, it is difficult to present, as a first approach, a
professional language (C language) extended with MPI primitives because the students
get bored because of the technical details without significant conceptual added value.

The most important didactic characteristic of our system is the identification
between the agent and the character of the virtual world: this introduces a natural
transformation from an abstract concurrent problem (e.g. multiple readers - single
writer problem) into a "concrete" situation (the example of the ants and the com in the
section 5 Experiment). The system visualises the evolution of the concurrent processes
through the evolution of the world: this kind of visualisation is deeply different from
that of the classical debuggers for parallel programs [7, 10].

The theory underlying our proposals is the constructionism of Papert [12].
According to this paradigm, learning is an active process: the students build their
mental infrastructures through a free exploration of the world.

The first embryonic version of our system, presented in [5], is evolved in [2, 3, 4];
the last version of the system is presented in this paper. The primitives introduced in
the different versions of the system, has enabled the definition of different didactic
trainings characterised by increasing levels of difficulties whose aim is to propose the
resolution of more and more sophisticated concurrency problems.

In particular, the didactic training we describe in this paper shows how the same
problem may be programmed through a sequence of solutions characterised by an
increasing degree of agents' autonomy: the increase of autonomy corresponds to the
use of communication primitives with higher degrees of non determinism; furthermore,
the students learn a decentralised way of thinking by exploiting the functionality of the
system.

The paper is organised as follows: firstly we present an analysis of some of the
existing animate systems based on concurrent paradigms, then we introduce our new
system, Advanced Orespics, and its Orespics-PL language; finally we propose an
example of didactic training to teach how non-determinism increases autonomy.

2 Related work

Any programming environment designed to support the building of an animate system
should offer some basic world-modelling capabilities and present them in an easy and
accessible form. It must support the simultaneous animation of multiple objects. It must
support object autonomy: i.e. objects should operate under their own control and must
be able to sense the surrounding environment as well as interact with other animate
objects.

Several interesting proposals of animate system are known today.
StageCast (en evolution of the KidSim system [15]) is a simulation system of

micro-worlds developed by Apple's Advanced Technology Group. Students who use
this instrument may create the characters of a micro-world and program their behaviour
through a set of rules. Each object of the micro-world is identified by three properties:

-120-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

• the appearance, that describes how the objects appear on video in a particular
context,

• the rules, which define its behaviour in a particular context,
• the property, that allows to store a particular event.

A student that uses StageCast creates the prototypes of the characters, inserts
several copies of each of them in the micro-world, and activates the simulation of the
world. At every tick (that represents the tick of the StageCast clock) each object of the
world examines its context and decides the new state by looking for its set of rules. The
creation of rules is made by demonstration, defining the relationships existing between
two graphic contexts: by using the mouse, a student arranges the objects of the world
defining the initial context of application of the rules {before context) and then he/she
modifies their disposition in the after context. The execution of the world is a change in
the disposition of objects.

When the simulation is active, all the objects on the screen move in parallel. This is
a simulated concurrency. The system applies the rules of transition following the order
of insertion of the characters in the world. It applies the rule of transition to the first
object of the world and evaluates the second one in the context eventually modified by
the application of the rules in sequence, starting from the first one.

StarLogo [14] is a programming environment to explore the behaviour of
decentralised systems developed at M.I.T.. Through this system, a student may
program and control, in parallel, hundreds of turtles through a Logo-like programming
language. The world of the turtles is alive: it is composed by hundreds of patches that
may be considered like turtles that are programmable but without movement. Turtles
move in parallel and use the patch to exchange messages. No mutual exclusion is
guaranteed on the patch and no explicit use of concurrent constructs is needed to
exchange messages.

ToonTalk [17] is a concurrent object oriented programming language based upon
the concurrent constraint programming paradigm and is based on an animated syntax
and programming environment. The concurrency and the message exchange paradigm
are limited and the target of the system is limited to children.

All these systems do not allow a clear and/or complete definition of communication
among concurrent entities.

The Orespics system, developed at the Computer Science Department of the
University of Pisa [1, 5] is programmable with Logo-PL language, a local environment
language in which students guide the action of at most 8 virtual agents.

Logo-PL has control flow, movement and communication commands and
expressions. The Logo-PL language defines a set of communication primitives. In
particular, the prototype version implements basic primitives to send and receive
messages. The receive primitive is synchronous and asymmetric while the send
primitive is synchronous and symmetric [8]. The introduction of these primitives
allows students to subordinate the actions of certain creatures to the action of others. As
clearly shown, in this prototype, the set of the communication primitives is extremely
poor.

-121

FEUP - Faculdade de Engenharia da Universidade do Porto

3 The Advanced Orespics system

Advanced Orespics is a project we are developing as further improvement of the
Orespics system described above. Its programming language is called Orespics-PL and
is based on the local environment model and on the explicit use of the communication
primitives. The Advanced Orespics system has substituted the previous one because a
richer set of communication primitives is defined, activation and termination constructs
are introduced and no limit to the number of interacting actors in the world is imposed.
Each actor is an agent of an animate system and has the attributes of autonomy,
purposefulness and the ability to react to the surrounding environment by the exchange
messages paradigm. An agent is characterised by a set of properties: the initial position
on the screen, its appearance and the code of its program.

The system gives the users an interface to define all these properties. The system
has a set of pre-defined fantastic and real characters like aliens and animals. The
students may choose the most suitable character according to the situation to solve.

The sequential part of Orespics-PL includes traditional imperative sequential
constructs (repeat, while, if ...) and all turtle primitives of the Logo language [6].
Orespics-PL language offers all the elementary data types (integer, boolean..): the only
data structure is the list. Some of the operations defined on list type are getFirst(list),
first(list) and second(list): getFirst returns the first item of list and pops it up; first and
second return respectively the first and the second ones and do not pop them up.

The set of primitives, functions and procedures used in the following examples are:
• versus(x, y), which returns the direction to assume to reach the point of co-

ordinates x and v,
• distance(x, y), which returns the distance between the position of agent and the

point (x, y),
• set_heading(angle), which turns the agent in the direction given by the angle,
• jump(x, y), the agent jumps to the point of co-ordinates (x, y),
• show(s), the agent shows on the screen the string s,
• random(val), which returns a random value included in +/- val. If parameter is

zero, it returns a random value according to the common definition.
As regards the concurrent part, the new language defines the following types of

primitives:
termination and activation,
synchronous and asynchronous send and receive,
broadcast/multicast send,
asymmetric receive,
a command to activate a population of agents.

We present, in the following, the syntax and semantics of these constructs.
The behaviour of an agent is specified between the keyword Agent and end where

the word that follows Agent is its name.
We now describe all the communication primitives of the language. As far as

semantics is concerned, that the communication partner is active or it has finished the
program execution or it is not ready to accept/receive the message is irrelevant.

-122-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

The syntax of the synchronous symmetric primitives is:

send&wait msgto agent
wait&reccivevariromagent

The semantics of synchronous and asynchronous primitives is well known in
literature [8]. With regards to the synchronous primitives, when an agent sends a
message to another one and its partner is not ready for communication or is not active,
it waits until the message has been received. The semantics of synchronous receive
primitive is analogous. The use of these primitives is shown in the following example.

Example 1
Consider the following problem:

"An agent wants to sleep for a time slice, after which it want to be woken up by an
alarm clock"

This micro-world may be programmed defining two agents. The first one sends the
other one the amount of time it wants to spend sleeping and waits till the other one
wakes it up. The second agent receives the message and simulates an alarm clock.
It is worth noticing that the behaviour of the sleepy agent may be easily simulated
exploiting a synchronous receive primitive to make it wait for the alarm.

Agent Clock
receive&wait timeSlice from Sleepy;
tick-«-0;
repeat tick •+- tick + 1;
until (tick = timeSlice)
send&wait timeSlice to Sleepy

end

Agent Sleepy
send&wait timeSlice to Clock;
receive&wait timeSlice from Clock;
show "Get up!";

end

The syntax of the asynchronous p"dmitives is:

receive&no_waitwrfrom<zgewr
send&no_waitw5gto agent

As for the asynchronous primitives, an agent sends/receives a message to/from
another one, but it does not wait for the successful issue of the communication. When
an agent executes a send&nojwait, it does not wait for the receiver to get the message
and it goes on with its execution. If the receiver is not ready to accept it or it is not
active, the message is inserted in a queue where messages are inserted and taken
according to the order of arrival. We suppose that messages sent by one agent to
another one are received in the same order as they are sent. When an agent executes a
receive&no_wait, it checks the existence of some incoming messages and goes on. If
the queue is empty, the message has no meaning, and no value is assigned to the var.
The meaning of var may be checked through the function in_message() which returns a
true value if the last executed receive&no_wait has picked up a valid message, and a
false value otherwise.

-123-

FEUP - Faculdade de Engenharia da Universidade do Porto

A process executing the receive&no_wait performs a non-deterministic choice: we
suggest that a suitable introduction of non-determinism in concurrent programs should
be given when this primitive is introduced to the students.

We have defined synchronous and asynchronous broadcast/multicast send. The
syntax of the synchronous broadcast send is:

sendAll&wait#z5g

The syntax of the synchronous multicast send is:

sendAll&waitrasgto listjzgents

In the first case an agent sends a message to all agents while in the second case it
sends a message only to the subset of agents defined in list_agentsm both cases it waits
for the successful issue of all the communications. Its execution is suspended until all
the receivers get the message.

We also define asynchronous broadcast and multicast primitives: as regards the
syntax, it is sufficient to substitute the word wait with no_wait and the semantics is
analogous to the symmetric case.

The language includes synchronous and asynchronous asymmetric receive. The
syntax of the synchronous asymmetric receive is:

receiveAny& waitnsgiromlistjzgents
receiveAny& waifewsg

In the first case an agent receives a message from any of the active agents in
list_agents, while, in the second case, it receives a message from any active ones, and
in both cases, it waits until one message has been received. If more than one message
arrives, its selection is non-deterministic.

In a system allowing the simulation of micro-worlds, a command to specify several
agents with the same behaviour is useful. To create a population of agents with the
same behaviour each agent's code has to be included between the keywords
GenericAgent and end.

The syntax of the construct is

newAgent(i..Af) agentName

The system generates the codes of N agents, which are called agentNamel,
agentName2 , agentNameN.

The usage of broadcast send, asymmetric receive and new Agent command are
shown in the following example.

Example 2
"The coach of the Chicago Bulls has to select the pivot man from a set of
basket ball players."

-124-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Agent Coach
receiveAny&wait max;
for(i-«-l to 4)

receiveAny&wait height;
if (max < height)

max ^height;
endif

endfor
sendAll&no_wait max;

end

GenericAgent BasketBall_Player
send&no_wait my_height to Coach;
receive&wait max from Coach;
if (max = my_height)

forward 10;
endif

end

The Coach agent receives the height of each player, computes the maximum one
and tells it to all players. The one having that height moves forward.

In this example we use new Agent construct to create the players of the team as
follows:
newAgentfl ..5) BasketBall_Player

This construct creates 5 players: BasketBall_Playerl,...., BasketBall_Player5. ^

4 A didactic training to learn the communication semantics

This section shows how a didactic training to teach communication semantics may
be planned. We introduce an example of didactic training, whose goal is to allow the
students to learn the semantics of different communication primitives and to let them
understand how the use of non-deterministic primitives increases the autonomy of the
agents.

According to the constructionist approach, this is obtained by proposing a set of
proper problems to the students and letting them solve these problems in the way they
prefer. The whole process is obviously guided by the teacher; nevertheless the student
may try different solutions and verify the effects of his/her program directly on the
screen in case s/he changes the program.

We shall show only the code of the agents used to solve the proposed problems: we
suppose they have just been created and that each of them has been properly defined.

The didactic training proposes a sequence of examples where the agents are
characterised by an increasing degree of autonomy: this implies the use of the non-
deterministic primitives.

We propose the following situation:
"In afield there are two ants called Z ant and T ant. They are searching

for food and make an agreement: the first who finds it notifies the other
one with the position of the food. "Good luck T". "Good luck Z. Let us
begin"

First, we propose the students to solve the problem by using only deterministic send
and receive commands. In this case, the solution will be characterised by a strict
synchronisation between the agents implementing the two ants: for instance, Z and Q
ants may exchange, at each step, a message notifying other if it has found the food or
not. If the agent has found it, it sends its co-ordinate to the other and stops moving. All

-125-

FEUP - Faculdade de Engenharia da Universidade do Porto

send primitives we use in this version are asynchronous to avoid the deadlock, and the
receive ones are synchronous.

Agent Z_ant Agent T_ant
x •*- randomO; x ■+- randomO;
y ■*- random(); y ■*- randomO;
jumpfx, y); jump(x, y);
LfounckH false; Lfound*- false;
You_found'<- false; You_found'4-false;
repeat repeat

X'4-random(25); x •*- random(25);
y*-random(15); y<- random(l 5);
right x; right x;
forward y; forward y;
if here_food(myX, myY) if here_food(myX, myY)
then then

send&no_wait "Found" to T_ant; send&no_wait "Found" to Z_ant;
send&no_wait [myX, myY] to send&no_wait [myX, myY] to
T_ant; Z_ant;
l_found'*-true; Lfound*- true;

else else
send&no_wait "Not Found" from send&no_wait "Not Found" from
T_ant; Z_ant;

endif endif
receive&wait [x] from T_ant; receive&wait [x] from Z_ant;
if(x = "Found") if (x = "Found")

receive&wait [x, y] from T_ant; receive&wait [x, y] from Z_ant;
You_found^-true You_found ^-true;

endif endif
until (Lfound OR You_found); until (Lfound OR You_found);
if You_found ifYou_found
then then

set_heading (versusfx, y)); set_heading (versus(x, y));
forward distance(x, y); forward distance((x, y));

endif endif
end end

In the second version, described here below, we propose students to employ non-
deterministic primitives to increase the autonomy of each agent: each agent does not
know the behaviour of the other one, in particular it does not know if and when the
other one is ready to communicate.

In this case, the agent has to use a communication primitive which allows to check
if a message is incoming from the environment without stopping its execution: this is
obtained through receive&no_wait.

-126-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Agent Z_ant
LfouncH-false;
You_found4- false;
x-4- random();
>■•*- random();
jump(x, y);
repeat

x*- random(25);
y*-random(15);
right x;
forward y;
if here_food(myX, my Y)
then

send&no_wait [myX, myY]
to T_ant;
I_found<-true;

else
receive&no_wait [x, y] from
T_ant;
if in_message()
then

You_found-*- trae;
endif

endif
until (Lfound OR You_found);
if You_found
then

set_heading (versus(x, y));
forward distance((x, y));

endif
end

Agent T_ant
Lfound*- false;
You_found*- false;
x-4- random();
y4- randomO;
jump(x, y);
repeat

x*- random(25);
y*- random(15);
right x;
forward y;
if here_food(myX, myY)
then

send&no_wait [myX, myY]
to Z_ant;
LfouncH-true;

else
receive&no_wait [x, y] from
Z_ant;
if in_message()
then

You_found*- true;
endif

endif
until (Lfound OR You_found);
if You_found
then

set_heading (versus(x, y));
forward (distance(x, y));

endif;
end

Each ant moves randomly, checking for the presence of the food. If an ant finds it,
it sends the other one the food co-ordinates and stops moving. If it does not find it, it
checks the presence of an incoming message from the other ant. If no message is
present it goes on moving, otherwise it receives the message and reaches the food. The
evolution of the program is shown in fig. 1.

It is important to stress that in this case the agents are completely autonomous. Each
one may be programmed without knowing the behaviour of the other agent: this is the
main difference between this example and the previous ones. The increase of autonomy
is obtained through the use of the receive&no_wait primitive that allows each agent to
perform a non-deterministic choice whose result depends on its interaction with the
surrounding world.

Finally, we propose a generalisation of the previous problems. A population of ants
is involved and more food sources are present.

Each ant moves randomly on the screen, and if it finds the food, it lets all the other
ones know. Otherwise, it checks if any ant has found the food: since more than one
source of food is present, each ant may receive more than one notification from the
other ones. In this case it reaches the nearest source of food.

-v
* :*f

*-

*
Fig. 1 Evolution of the movement

-127-

FEUP - Faculdade de Engenharia da Universidade do Porto

GenericAgent Ant repeat
best_distance-4- MaxDistance; receiveAny&no_wait msg;
best_x-4-MaxX; if in_message ()
best_y«-MaxY then
l_foun(M- false; YouJbund-4-true;
YouJbund-*-false; If (distanced, y) <
x ♦- randomO; distance(best_x, best_y))
y *- randomO; best_x -4- x;
jump(x,y); best_y<-y;
repeat endif

angle'*-random(25); endif
far*-randomO 5); until(in_message())
right angle; endif
forward far; until (I_found OR You_found);
if here_food(myX, myY) if You_found
then then

sendAll&no_wait [myX, my Y]; setjieading (versus(best_x, best_y));
I_found*-true; forward distance(best_x, best_y);

else endif
end

The behaviour of each ant is similar to that of the previous examples: if an ant finds
the food it exploits a broadcast send (sendAll&no_wait) to inform all others. The send
is asynchronous because no strict synchronisation is required. If an ant does not find
the food, it checks, through the function in_message(), for the presence of any
incoming messages: it is worth noticing that the agent exploits the receiveAny&no_wait
because it does not know in advance which ant has found the food. A further level of
non-determinism is present since the ant does not know who has sent the message. All
incoming messages are picked up and the message containing the nearest co-ordinates
is selected while others are discarded: the ant then reaches the point corresponding to
the selected message.

With the command

new Agent (1..5) Ant

we create several ants with the same behaviour which move randomly on the screen
and search for the food. The newAgentcommand, according to its semantics, generates
the code of five ants, Antl,..., Ant5. The use of broadcast send and asymmetric receive
makes each ant independent from the other: its behaviour is not bound to a particular
ant.

The following figure shows what happens in the case that two ants find the food at
the same time.

-128-

VECPAR '20(H) - 4th International Meeting on Vector and Parallel Processing

* m
*

*

%\ * %* % **
. * *a» #fi*

*
■#■

*

Fig. 2 Population of ants: evolution of the movement

5 Experiment

The last version of the Orespics system [13], has been employed to carry out a
preliminary experiment. The target of it has been a fifteen years old student, called
Massimiliano, who is currently studying Pascal and with some experience with Logo.
We are happy to show the positive result of this experiment.

Massimiliano has rapidly learnt the basic features of the system and, when required
to define a micro-world, he has proposed a famous game in Italy "Worms II". Since
this problem offers a low degree of parallelism, we have proposed him an alternative
one, a deterministic version of the classical "multiple readers/single writer" problem,
which we have proposed in the following way:

"A tractor brings some corn into a basket where some ants are eating. To avoid
ants' death, the tractor can not unload the corn when the ants are eating. The ants eat
all the corn in the basket before to leave it and the tractor fills it completely with the
corn ".

Massimiliano has immediately defined the agents of this micro-world: the most
surprising issue was the introduction of an animated basket. In the concurrency
framework, this corresponds to a manager for the shared resource, i.e. the corn. The
animated basket co-ordinates the activities of the ants and of the tractor by alternating
their accesses to the basket.

The kind of the messages employed show the age of the boy: for instance, the
tractor sends to the basket the message "levatemele di torno "{"get rid of the ants ") to
drive out the ants, each ant sends the message "ehepaura!"("l am afraid!") as soon as
it has gone out of the basket.

We have noticed that the boy has always preferred the synchronous communication
primitives to the asynchronous ones because "In this case it's the same".

Finally, the only relevant error of the program is a typical "time dependent" bug:
the student has exploited a "wait 15" instruction in the agent "basket" to define the time
the tractor needs to unload the corn. This does not guarantee the mutual exclusion of
the accesses to the basket. We have shown him that it is guaranteed only if the end of

-129-

FEUP - Faculdade de Engenharia da Universidade do Porto

the unload operation is notified from the tractor agent to the basket one through an
explicit message.

Fig.3 shows some snapshots of the micro-world.

Fig. 3 Snapshots of the microworld

6 Conclusions

We may create lots of new examples in which the agents co-ordinate and
synchronise themselves. Classic problems like the game of life, the simulation of a
biological system, and so on may be naturally realised in our system.

We have studied the possibility of creating several typologies of agents
characterised by a richer set of personal properties, for example, in the case of the ants
we give them the ability to move the antennae or in the case of the dog the ability to
bark. We are implementing a version in which the character may be created or
imported by the student.

7 Reference

[i]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

G. Capretti, Strumenti per l'apprendimento della concorrenza nella didattica dell'informatica, Master of
Computer Science Thesis, Computer Science Department, University of Pisa, December 1997
G. Capretti, A. Cisternino, M. R. Laganä and L. Ricci, A concurrent microworld, ED-MEDIA 99 World
Conference on Educational Multimedia, Hypermedia & Telecommunications, Seattle, Washington,
Junel9-24th
Giuseppina Capretti, Maria Rita Laganä, Laura Ricci - Decentralised programming of communicating
turtles - EUROLOGO 99 - Sofia, Bulgaria
Giuseppina Capretti, Maria Rita Laganä, Laura Ricci, Learning concurrent programming: a
constructionist approach, PaCT 99 Parallel Computing Tecnologies - San Pietroburgo, Russia,
G. Capretti, M. R. Laganä and L. Ricci, Micro-world to leam concurrency, SSCC'98, 22-24 September
1998, Durban, South Africa, 255-259
B. Harvey, Computer Science Logo Style, The Mit Press, Cambridge, 1997
P. Kacsuk, J.C. Cunha, G. Dozsa, J. Lourenco, T. Fadgyas, T.Antao, A Graphical Development and
Debugging Environment for Parallel Programs,. Parallel Computing, 22, 1997, pp. 1747-1770,
C. A. R. Hoare, Communicating Sequential Process, Comm. of the ACM, Vol. 21, No. 8, Aug. 1978,
pp. 666-677

-130-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

[9] V.Milutinovic e P.Stenstrom, Proceedings of the IEEE Special issue on Distributed Shared Memory
systems, vol. 87, n. 3, March 1999, pp. 397-532.

[10] C.E.Mcdowell, D.P.Helmbold, Debugging Concurrent Programs ACM Computing Surveys, Vol.21,
No. 4, December 1989, pp. 593-622

[11] P.S. Pacheco Parallel programming with MPI, Morgan Kaufmann, 1977
[12] S. Papert, Mindstorm: children, computer and powerful ideas, Basic Books, New York, 1980.
[13] S. Puri, Orespics: un ambiente per 1'apprendimento della concorrenza, Master of Computer Science

Thesis, Computer Science Department, University of Pisa, May 2000
[14] M. Resnick: Turtles, termites and traffic jam: exploration in massively parallel micro-world, The MIT

Press, Cambridge, 1990.
[15] D. C. Smith and A. Cypher, KidSim: end users programming of simulation, Apple Computer Inc.,

1997. http://www.acm.org/sigchi/chi95/Electronic/documnts/papers/aclbdy.htm
[16] M. D. Travers, Programming with agents: new metaphors for thinking about computation, Bachelor of

Science Thesis at Massachusetts Institute of Technology, 1996
[17] http://www.toontalk.com

-131-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Dynamic Load Balancing Model: Preliminary
Results for Parallel Pseudo-Search Engine

Indexers/Crawler Mechanisms using MPI and
Genetic Programming

Reginald L. Walker

Computer Science Department
University of California at Los Angeles

Los Angeles, California 90095-1596
rwalker@cs.ucla.edu

Abstract. Methodologies derived from Genetic Programming (GP) and
Knowledge Discovery in Databases (KDD) were used in the parallel im-
plementation of the indexer simulator to emulate the current World Wide
Web (WWW) search engine indexers. This indexer followed the index-
ing strategies that were employed by AltaVista and Inktomi that index
each word in each Web document. The insights gained from the initial
implementation of this simulator have resulted in the initial phase of the
adaption of a biological model. The biological model will offer a basis for
future developments associated with an integrated Pseudo-Search En-
gine. The basic characteristics exhibited by the model will be translated
so as to develop a model of an integrated search engine using GP. The
evolutionary processes exhibited by this biological model will not only
provide mechanisms for the storage, processing, and retrieval of valuable
information but also for Web crawlers, as well as for an advanced com-
munication system. The current Pseudo-Search Engine Indexer, capable
of organizing limited subsets of Web documents, provides a foundation
for the first simulator of this model. Adaptation of the model for the
refinement of the Pseudo-Search Engine establishes order in the inherent
interactions between the indexer, crawler and browser mechanisms by in-
cluding the social (hierarchical) structure and simulated behavior of this
complex system. The simulation of behavior will engender mechanisms
that are controlled and coordinated in their various levels of complexity.
This unique model will also provide a foundation for an evolutionary ex-
pansion of the search engine as WWW documents continue to grow. The
simulator results were generated using Message Passing Interface (MPI)
on a network of SUN workstations and an IBM SP2 computer system.

1 Introduction

The addition of new and improved genetic programming methodologies [14],[36]
will enable the preliminary Pseudo-Indexer model [33] to generate a population
of solutions [6],[22] that provide some order to the diverse set of Web pages

133-

FEUP - Faculdade de Engenharia da Universidade do Porto

comprising the current and future training sets. The applicability of genetic pro-
gramming to this task results from the existence of an adequate population size
in relation to the difficulty in organizing the diverse set of Web pages [30],[34].

Studies of parallel implementations of the genetic programming method-
ology [6],[15],[18],[25] indicated that population evaluation is the most time-
consuming associated process. Population evaluations for the Pseudo-Search En-
gine's Indexer will result from calculating the fitness measures associated with
each Web page after one of the following: 1) parsing the training set, 2) addi-
tions to the training set, or 3) the execution of one or more of the GP operators.
The cost associated with the fitness computations [18] offsets the cost associated
with the load balancing and communication overheads. The previous GP studies
have resulted in dynamic load-balancing schemes which can be used to monitor
the irregularity in processor work loads, a result of parsing variable size Web
pages. A major shortcoming of GP applications [6] is the amount of execution
time required to achieve a suitable solution.

2 Chromosome Modeling using Genetic Methodologies

2.1 Genetic Methodologies

Genetic programming is an evolutionary methodology [36] that extends the tech-
niques associated with Genetic Algorithms (GAs) [4]. The evolutionary force of
these methodologies reflects the fitness of the population. The basis of GAs re-
sults from designing an artificial chromosome of a fixed size that maps the points
in the problem search space to instances of the artificial chromosome. The ar-
tificial chromosome is derived by assigning variables of the problem to specific
locations (genes). The memes [1] denote the value of a particular gene variable.
Genetic algorithms provide an efficient mechanism for multidimensional search
spaces that may be highly complex and nonlinear. The components of a GP are:

1. Terminal set. The terminal set consists of input variables or constants.
2. Function set. The functional set varies, based on the GP application, by

providing domain-specific functions that construct the potential solutions.
3. Fitness measure(s). The fitness measure(s) provide numeric values for the

individual components associated with the members of a population.
4. Algorithm control parameters. The algorithm control parameters are depen-

dent on population size and reproduction rates (crossover rate and mutation
rate).

5. Terminal criterion. The terminal criterion uses the fitness measures to de-
termine the appropriateness of each solution based on an error tolerance or
a limit on the number of allowable generations.

The search space is defined by the terminal set, function set, and fitness mea-
sures. The quality and speed of a GP application is controlled by the algorithm
control parameters and terminal criterion.

Genetic programming is composed of fitness evaluations [15],[18] that result
from the application of genetic operators to individual members of a chosen

-134-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

population (Web pages). The operators incorporated in this methodology are
individual (or subgroup) migration, reproduction, crossover, and mutation. The
use of a linear string of information can result from the direct modeling of DNA.
The outcome from applying the genetic operations to this string of information
corresponds to obtaining a globally optimum (or near-optimum) point in the
original search space of the problem.

The migration operator consists of a process to select individual(s) to delete
from the population. The reproduction operator consists of a process to copy an
individual into a new population. The crossover operator generates new offspring
by swapping subtrees of the two parents. The mutation operator randomly se-
lects a subtree of a chosen individual. This process then randomly selects a new
subtree to replace the selected subtree. The application of the mutation opera-
tor reduces the possibility of achieving a solution that represents a local optima.
The selection of individuals from the distinct subpopulations may follow several
formats. A new methodology will be developed when applying these operators
to subpopulations of Web pages.

»Us

HI

■he

■i

-11
-i*
-f
^
-41

-Hi

«-f

«HI
'A

«-f
Hi

Fig. 1. Distribution of Web pages.

2.2 Modeling Chromosomes

The Pseudo-Search Engine Indexers' hybrid chromosome structure in Figure 1
follows the methodologies of GP and GAs. These structures represent subsets of
Web pages (subpopulations) that reside at each node (Web site) in a distributed
computer system. Each strand of genes that reside on each Nodei (Web site) is
viewed as a set of the genetic components of an individual member of a simulated
species. Each horizontal strand in the chromosome structure represents a Web

135-

FEUP - Faculdade de Engenharia da Universidade do Porto

page that would translate into a meme. The bracket to the left of the Web pages
implies that the pages have similar characteristics to those that comprise a gene
(allele) and its memes.

The components of the genes are referred to as the memes and the number
of memes vary within each allele. The memes are the actual Web pages corre-
sponding to primitive features that are contained at each Web site. New allele
are formed by the addition of new Web pages at a given Web site. When new
memes are added to enhance an alleles' current set of memes, each allele can
grow in size, but its chromosome length remains fixed. The application of the
GP crossover operator results in two new chromosomes, formulating from the
transmission of components of the genetic makeup of the parents. The bracket
mechanism provides a numerical order to the Web pages in this structure. This
approach provides a mechanism to facilitate the evolution of diverse nodes. The
use of a single population leads to panmictic selection [15] in which the indi-
viduals selected to participate in a genetic operation can be from anywhere in
the population. The method used to avoid local optima [22] involves subpopu-
lations [24]. This model will be expanded by simulating double-stranded RNA
genomes [10] as the population of indexed Web pages grows.

_l I, I,.I ,,l , 111>1111 * i < i * 111 > ii,M II | l "I""!""-

1200

1000 7 \

o
D
0
A tt
X •

i Web Page
2 Web Pages
4 Web Pages —
8 Web Pages
16 Web Pages "_
32 Web Pages
64 Web Pages —
128 Web Pages
256 Web Pages
512 Web Pages ~

% soo

I
E 600 -^

400

"V \
\

zoo

" :^
-

: i^t^l ..
.1.

0
DM 1.00 2.00 9.00 10.00 1100

Number of Processors (Nodes)

Fig. 2. Execution times for the workstations.

3 The Biological Model

The biological model for the Pseudo-Search Engine [32] is based on the social
structure of honeybees [9],[29]. A mathematical model of the social structure of
honeybees will be used to enhance the incorporation of GP methodologies [14]

136-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

since the bee colony represents a highly evolved biological system [17] which
forms a basis to model the continuous expansion of Web pages.

The genetic programming approach incorporates the following genetic op-
erators: migration, reproduction, cross-over, and mutations. A similar group of
evolutionary operators for honeybee colonies are: migration, swarming, and su-
persedure (replacement of an existing, older queen by a younger queen follow-
ing a fight). The evolutionary operators associated with the queen, drones, and
worker bees are similar to the genetic programming operators. The cross-over
operator is similar to the mating process for the queen bee, but differs since the
parent chromosomes cease to exists in GP but only the queen persist in the evo-
lutionary sense. The children chromosomes replace their corresponding parent
chromosomes in standard GP. The migration operator in GP purges an existing
subpopulation of the least desirable members (traits) and in some cases the best
member (trait) [25]. This process was implemented in GP as an attempt to avoid
local optimals.

In a true evolutionary model individuals migrate from one subpopulation
to another [7] for many diverse reasons such as crowding, changes in the en-
vironmental conditions, limitations on colony activities, or members becoming
disoriented. These external evolutionary factors benefit the gene pool by ensur-
ing diversity. The mating ritual [9] for queen bees in colonies provides a built-in
mechanism for incorporating a host of diverse genetic profiles into existing and/or
new colonies. The drone bee mates once and dies - a process similar to a worker
bee using its stringer and dying.

0 00 1.00 2.00 3.00 * 00 5 00 6.00

Number of Processors (Nodes)

Fig. 3. Execution times for the IBM SP2.

137-

FEUP - Faculdade de Engenharia da Universidade do Porto

4 Limitations of the Parallel Implementations

4.1 Timing Results

Message-passing studies [8],[26] have been conducted to determine the efficiency
of parallel programs, implemented on shared as well as distributed memory com-
puter systems. The implemented message-passing paradigm depended upon a
client-server model [19] with n - 1 clients for a sub-cluster of n nodes as its
basis. The message size used in all data transmissions was consistent and the
data type contained an array of 101 characters. The sending and receiving mes-
sage patterns for the n node cluster varied according to OS tasks and the tasks
of other users on the nodes in the clusters. This study was not conducted in
dedicated cluster environments.

Walker [31] described the load-balancing model that led to the execution
times in Figures 2 and 3. The execution results displayed reflect the diversity
existing among the different types of computer hardware used in this study.
These results also reflect quasi-dedicated computer environments associated with
tightly coupled and loosely coupled parallel computer models. The workstation
timing results show consistent increases in required CPU time as the training
set size increases. The IBM SP2 results display spikes that reflect the impact
of other users in a tightly coupled environment, as well as the nondeterministic
execution of the load-balancing model.

Number of Processors (Nodes)

Fig. 4. Speedup for the workstations.

4.2 Network of Workstations

This study showed the limitations that exist on a cluster of quasi-dedicated
SUN workstations. The inherent limitations [26] for the parallel implementa-

138-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

tions resulted from start-up latencies and limited bandwidth of the Ethernet
connections. Employing load balancing for computationally intensive routines
led to the most efficient implementations when message passing was reduced.
The speedup and efficiency results presented in Figures 4 and 6 were computed
using

T
Speed -up = x— (1)

« T J com

and
Efficiency =

Speed — up Ti
1 ~r Tlpl com

(2)

where Tcom denotes the communication time and np denotes the number of nodes
in the sub-cluster.

EDO TT i j i i i i j i i i i j i i i i | M I I I I I I 1 I I 1 I I 1111111 M l

5.50 o 1 Web Page -j-
D 2 Web Pages 2

5.00
0 4 Web Pages

6 Web Pages -.
« 16 Web Pages -

4.50 X 32 Web Pages — • 64 Web Pages 2

4 00
tM 126 Web Pages

256 Web Pages
512 Web Pages

—
3.50 % 2

1 M° •z (/) z
2.50

z
2.00 1
1.50

/ I/y^^^^^ 1
LOT

" -g B j ~
z

0.50

'IOMIMMIUMI ■ ■ ■. i. ■ * i, , i , i -MI

z

Number of Processors (Nodes)

Fig. 5. Speedup for the IBM SP2.

4.3 The IBM SP2

A second study was conducted on the IBM Scalable POWER parallel system
9076 SP2 [23]. This environment supports the MPI language coupled with the
SP2's Message Passing Library (MPL). The classification of the programming
model supported by this environment is recognized as a distributed memory
model, as opposed to a network of workstations. The development of the SP2
resulted from the need for fast communication hardware for parallel data trans-
missions.

The ideal load-balancing model for the SP2 environment exists when node
interaction incorporates the posting of nonblocking send and receive calls. An

139-

FEUP - Faculdade de Engenharia da Universidade do Porto

efficient implementation of this approach requires that each node post a non-
blocking receive and then execute the send. This strategy will allow the send
operator to proceed without additional buffering. Likewise, the timing of wait
calls should coincide with the availability of the application buffers. Adhering
to these implementation techniques may reduce the degree of nondeterministic
execution of the load-balancing model by preserving order and reducing the risk
of deadlock. The speedup and efficiency results [21] presented in Figures 5 and 7
reflect the nondeterministic execution of the load-balancing model.

1.000

,,i,i,|,i i i | i ii , | i i , i , i i i |i IM II i| M i|i i "I1

4
0900 r —1- -E
0.800

0.700

f
j:

0.600 L -:
0.500 r -
0400

0.300

0500

:
0
D
0
A
a
i •

1 Web Page ^V ™"s^ \
2 Web Pages x. \^ \^
4 Web Pages ^^^ ^^^-~^ *
8 Web Pages —^^ "Ö—^_
16 Web Pages ^*" —-A^
32 Web Pages ^^--«.
64 Web Pages
12S Web Pages
256 Web Pages
512 Web Pages

i r

0.100

! IMMIM 1,11

Number of Processors (Nodes)

Fig. 6. Efficiency for the workstations.

4.4 Discussion

The communication hardware and page size irregularity affect the load distribu-
tion of the Web pages. These effects show in the uneven distribution of pages,
as well as the erratic behavior in the execution times in Figures 2 and 3. The
nondeterministic execution of the receives by the program manager [19] may
be reduced by incorporating the order of receive/send operators for the clients
(Web sites) requesting Web pages from the Indexer program manager.

The timing results associated with the network of workstations generated
were expected. The predicted output for this environment is also displayed in
the speedup and efficiency results. The self-scheduling, load-balancing model [21]
indicated that increases in the workload will improve efficiency. The use of 512
Web pages showed that the model will provide an ideal starting point for in-
creasing the workload (addition of the genetic operators) without increasing the
number of Web pages. The speedup and efficiency results associated with the
IBM SP2 point out the need for a specific load-balancing model.

140-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

1_0 1 Web Page
O 2 Web Pages
0 4 Web Pages

■A 8 Web Pages
K 16 web Pages
X 32 Web Pages

■• 64 Web Pages
M 128 Web Pages

~_'." 256 Web Pages
--I- 512 Web Pages

Number of Processors (Nodes)

Fig. 7. Efficiency for the IBM SP2.

5 Mechanisms for Expanding the Current Load Balancing
Model

5.1 Overview

The social structure associated with honeybee hierarchy provides an ordered
structure to what can be referred to as the simplest solution to the problem
of multiway rendezvous. The initial implemented load-balancing model used a
MPI algorithm [19] as the basis. This model followed the approach of a node
manager for distributed computing. Similar approaches have been implemented
for general distributive computing, as well as for the implementation of parallel
GP load-balancing models. The implementation of the load-balancing mecha-
nism for the Pseudo-Search Engine Indexer model follows the theory associated
with the implementation of an Event Manager (EM) [2].

The EM concept provides a paradigm for the development and implementa-
tion of interface mechanisms associate with the three major components of the
Pseudo-Search Engine. The manager interface paradigm will be an extension of
the multiway rendezvous model [2]. This model provides the following benefits: 1)
an extension of the binary rendezvous model where communication involved the
synchronization of exactly two nodes, and 2) mechanisms for the synchronous
communication between an arbitrary number of asynchronous nodes. These in-
terface components of the Pseudo-Search Engine managers are:

1. Web page indexer manager, M\
2. Web crawler manager, M2

3. Web browser interface manager, M3

Each of these three managers will control its respective load-balancing mecha-
nisms based on its respective functionality.

141

FEUP - Faculdade de Engenharia da Universidade do Porto

5.2 Foraging Web Scouts/Crawlers for the Pseudo-Search Engine:
A Active Networks Approach Using Genetic Programming

Overview of Web Scouts/Crawlers. The efficiency of Internet applica-
tions is being tested by the addition of new applications that compete for the
same network resources. Studies associated with network traffic [5],[16] show
the need for adaptive congestion control and avoidance at the application level.
The side-effects of the current non-adaptive application mechanisms result in
self-similarity among network transmissions. The need of efficient Web scouts
(probes) for the Pseudo-Search Engine Web crawlers results from the future
requirements associated with new applications. The exponential growth of Web
documents, the incorporation of multimedia applications with real-time demands,
and a steady increase in WWW users will lead to refinements in efficient design
and implementation of crawler mechanisms. The competition for bandwidth will
reward the adaptive and efficient applications. The incorporation of active net-
works (ANs) methodologies [27],[28] can enhance the development and incorpo-
ration of the biological model associated with the Pseudo-Search Engine.

Aspects of the foraging mechanisms used by the bee colony provide a basis
for scout/crawler mechanisms to be used for congestion control and data trans-
mission [13]. The factors that influence the amount of foraging are temperature,
weather, and day length. The weather affects the availability of pollen and nec-
tar. The temperature coupled with the time of day determines the quantity of
pollen and/or nectar. The attractiveness of particular crops are rated based on
several criteria. Similar mechanisms are needed to determine the routing ta-
bles for retrieving Web pages from distributed computer networks that span the
Internet and provide a diversity of resources.

Overview of Active Networks. Active networks research provides insight
into the software needed to support GP communicating agents being developed
to retrieved WWW documents from the diverse set of Web sites. ANs enable
the retrieval of state information from routers that support the infrastructure of
the Internet by embedding active capsules (components) [11] within each packet
transmitted via the Internet. The active capsules are executed on the routers
as the packets traverse the Internet starting at a source (host) and possibly
terminating at the destination (host).

Active networks was developed to facilitate efficient network communica-
tion [35] by incorporating active capsules in the packets that are executed and
routed by the switches that support the Internet's infrastructure. The ANs model
was designed to minimize additional computational overhead at the router level
needed to activate the capsule, but the overhead increases based on the com-
plexity of the transmitted active capsule component. Additional complexity can
be added to the basic AN model through the enhancement of the execution en-
vironments (EEs) [3] which result in virtual EEs. This area of research provides
execution environments which can be used to program routers to capture state
information associated with LANs and/or WANs, which in turn can be incorpo-

142-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

rated into a methodology for creating scouts/crawlers needed for the retrieval of
Web pages for the Pseudo-Search Engine [30].

5.3 Proposed Web Scout and Crawler Mechanisms

The Web crawlers required to adequately retrieve the growing number of Web
pages will require some form of adaptive methodology as each Web scout (probe)
searches for efficient paths (routes) to an adequate source of information (Web
documents) to build Internet Service Provider (ISP) router tables for the crawler
mechanisms. The initial step of this proposed methodology is to send out scouts
to all ISP providers in a manner similar to reliable flooding [20]. The purpose of
collecting timing and path information to and from the ISP providers reflects the
need to find efficient routes to the portal associated with the hosts of information
reflected in its hierarchy structure of sub-hosts. Each provider is viewed as a
gateway into the information associated with its sub-host Web page directory
structure. This methodology has the ability to discover new ISPs, as well as new
sub-hosts providing services to new and existing Web clients. The end effect is
the faster discovery of new Web pages.

5.4 Strategies for Communicating Agents Using Genetic
Programming

Iba et al. [12] presented studies of communicating agents that reflect the need to
evaluate techniques for developing cooperating strategies. One application of this
methodology is the Predator-Prey pursuit problem - a test bed in Distributed
Artificial Intelligence (DAI) research - that measured the impact of limited abil-
ity and partial information for agents pursuing/seeking the same goal indepen-
dently, instead of relying on cooperation to solve a discrete set of subproblems.
The metrics associated with this aspect of GP research included: 1) applicability
of GP to multi-agent test beds, 2) observing the robustness (brittleness) of co-
operative behavior, and 3) examining the effectiveness of communication among
multiple agents. This co-evolutionary strategy provides a methodology for the
comprehensive assessment of the impact of robustness (brittleness) of coopera-
tive behavior and its effectiveness among communicating agents. The robustness
of a GP program was defined [12] as the ability of agents to cope with noisy
or unknown situations (unknown test data) within a GP application when com-
munication among multiple agents was due to effective work partitioning. New
and potentially improved behavior patterns were found to evolve through the
use of a fitness measure associated with a co-evolutionary strategy. The panoply
(multiplicity) of relationships among the communicating agents include:

- Agents requesting data from other agents (Communicating Agents)
- Agents negotiating their movements with other agents (Negotiating Agents)
- Agents controlling other agents (Controlling Agents)

-143-

FEUP - Faculdade de Engenharia da Universidade do Porto

6 Conclusion

The current Pseudo-Search Engine Indexer, capable of organizing limited sub-
sets of Web documents, provides a foundation for the first beehive simulators.
Adaptation of the honeybee model for the refinement of the Pseudo-Search En-
gine establishes order in the inherent interactions between the indexer, crawler
and browser mechanisms by including the social (hierarchical) structure and
simulated behavior of the honeybee model. The simulation of behavior will en-
gender mechanisms that are controlled and coordinated in their various levels of
complexity.

7 Acknowledgments

The author wishes to thank Walter Karplus, Zhen-Su She, and Peter Reiher
for their direction and suggestions, and Elias Houstis, Ahmed K. Elmagarmid,
Apostolos Hadjidimos, and Ann Catlin for support, encouragement, and access
to the computer systems at Purdue University. Special thanks to the 1999 UCLA
SMARTS students (London Wright-Pegs and Samir Asodia) and Martha Lovette
for assistance with the chromosome structures depicted in Figure 1. Plots were
generated using PSplot written by Paul Dulaney (Raytheon Corporation).

Support for this work came from the Raytheon Fellowship Program and
Honeybee Technologies. Implementation results associated with the network of
workstations originated on computers located in the Department of Computer
Sciences, Purdue University, West Lafayette, IN. The implementation results
associated with the IBM SP2 were generated on a computer cluster located at
the University of California, Los Angeles.

References

1. Abramson, M.Z., Hunter, L.: Classification using Cultural Co-evolution and Ge-
netic Programming. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.):
Proc. of the 1996 Genetic Programming Conf. MIT Press, Cambridge, MA (1996)
249-254.

2. Bagrodia, R.: Process Synchronization: Design and Performance Evaluation of Dis-
tributed Algorithms. IEEE Transactions on Software Engineering 15 no. 9 (1989)
1053-1064.

3. Braden, B., Cerpa, A., Faber, T., Lindell, B., Phillips, G., Kann, J.: The ASP
EE: An Active Execution Environment for Network Control Protocols. Technical
Report, Information Sciences Institute, University of Southern California, Marina
del Rey, CA (1999).

4. Chapman, CD., Jakiela, M.J.: Genetic Algorithm-Based Structural Topology De-
sign with Compliance and Topology Simplification Considerations. J. of Mech.
Design 118 (1996) 89-98.

5. Crovella, M.E., Bestavros, A.: Self-Similarity in World Wide Web Traffic: Evidence
and Possible Causes. IEEE/ACM Transactions on Networking (1997) 1-25.

- 144-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

6. Dracopoulos, D.C., Kent, S.: Bulk Synchronous Parallelisation of Genetic Program-
ming. In: Wasniewski, J., Dongarra, J., Madsen, K., Olesen, D. (eds.): PARA'9:
Proc. of the 3rd Intl. Workshop on Applied Parallel Computing, Industrial Com-
putation and Optimization. Springer-Verlag, Berlin, Germany (1996) 216-226.

7. Duda, J.W., Jakiela, M.J.: Generation and Classification of Structural Topologies
with Genetic Algorithm Speciation. Journal of Mechanical Design 119 (1997) 127-
131.

8. Franke, H., Hochschild, P., Pattnaik, P., Snir, M.: An Efficient Implementation of
MPI. In: Proc. of Conf on Prog. Environments for Massively Parallel Distributed
Systems. (1994) 219-229.

9. Free, J.B.: The Social Organization of Honeybees (Studies in Biologyno. 81). The
Camelot Press Ltd, Southampton (1970).

10. Gouet, P., Diprose, J.M., Grimes, J.M., Malby, R., Burroughs, J.N., Zientara, S.,
Stuart, D.I., Mertens, P.P.C.: The Highly Ordered Double-Stranded RNA Genome
of Bluetongue Virus Revealed by Crystallography. Cell 97 (1999) 481-490.

11. Horta, E.L., Kofuji, S.T.: Using Reconfigurable Logic to Implement an Active Net-
work. In: Shin, S.Y. (ed.): CATA 2000: Proc. of the 15th Intl. Conf. on Computers
and their Applications. ISC A Press, Cary, NC (2000) 37-41.

12. Iba, H., Nozoe, T., Ueda, K.: Evolving Communicating Agents based on Genetic
Programming. In: ICEC '97: Proc. of the 1997 IEEE Intl. Conf. on Evolutionary
Computation. IEEE Press, New York (1997) 297-302.

13. Information Sciences Institute: Transmission Control Protocol (TCP). Technical
Report RFC: 793, University of Southern California, Marina del Rey, CA (1981).

14. Koza, J.R.: Survey of Genetic Algorithms and Genetic Programming. In: Proc. of
WESCON '95. IEEE Press, New York (1995) 589-594.

15. Koza, J.R., Andre, D.: Parallel Genetic Programming on a Network of Transput-
ers. Technical Report STAN-CS-TR-95-1542. Stanford University, Department of
Computer Science, Palo Alto (1995).

16. Leland W.E., Taqqu M.S., Willinger W., Wilson, D.V.: On the Self-Similar Nature
of Ethernet Traffic. In: Proc. of ACM SIGComm '93 ACM Press (1993) 1-11.

17. Marenbach, P., Bettenhausen, K.D., Freyer, S., U., Rettenmaier, H.: Data-Driven
Structured Modeling of a Biotechnological Fed-Batch Fermentation by Means of
Genetic Programming. J. of Systems and Control Engineering 211 no. 15 (1997)
325-332.

18. Oussaidene, M., Chopard, B., Pictet, O.V., Tomassini, M.: Parallel Genetic Pro-
gramming and Its Application to Trading Model Induction. Parallel Computing
23 no. 8 (1997) 1183-1198.

19. Pacheco, P.S.: Parallel Programming with MPI. Morgan Kaufman Publishers, Inc.,
San Francisco, (1997).

20. Peterson, L.L., Davie, B.S.: Computer Networks: A Systems Approach. Morgan
Kaufmann Pbulishers, Inc., San Francisco (1996).

21. Quinn, M.J.: Designing Efficient Algorithms for Parallel Computers. McGraw-Hill,
New York (1987).

22. Sherrah, J., Bogner, R.E., Bouzerdoum, B.: Automatic Selection of Features for
Classification using Genetic Programming. In:Narasimhan, V.L. Jain, L.C. (eds.):
Proc. of the 1996 Australian New Zealand Conf. on Intelligent Information Sys-
tems. IEEE Press, New York (1996) 284-287.

23. Snir, M., Hochschild, P., Frye, D.D., Gildea, K.J.: The communication software
and parallel environment of the IBM SP2. IBM Systems Journal 34 no. 9 (1995)
205-221.

145-

FEUP - Faculdade de Engenharia da Universidade do Porto

24. Stoffel, K., Spector, L.: High-Performance, Parallel, Stack-Based Genetic Program-
ming. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.): Proc. of the
1996 Genetic Programming Conf. MIT Press, Cambridge, MA (1996) 224-229.

25. Tanese, R.: Parallel Genetic Algorithm for a Hypercube. In: Grefenstette, J.J. (ed.):
Proc. of the 2nd Intl. Conf. on Genetic Algorithms. Lawrence Erlbaum Associates,
Hilsdale, NJ (1987) 177-183.

26. Tatsumi, M., Hanebutte, U.R.: Study of Parallel Efficiency in Message Passing
Environments. In: Tentner, A. (ed.): Proc. of the 1996 SCS Simulation Multicon-
ference. SCS Press, San Diego, CA (1996) 193-198.

27. Tennenhouse, D.L., Smith, J.M., Sincoskie, W.D., Wetherall, D.J., Minden, G.J.:
A Survey of Active Network Research. IEEE Communications Magazine 35 no. 1
(1997) 80-86.

28. Tennenhouse, D.L., Wetherall, D.J.: Towards an Active Network Architecture.
ACM Computer Communications Review 26 no. 2 (1996).

29. von Frisch, K.: Bees: Their Vision, Chemical Senses, and Languages. Cornell Uni-
versity Press, Ithaca, New York (1964).

30. Walker, R.L.: Assessment of the Web using Genetic Programming. In: Banshaf, W.,
Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith,R.E. (eds.):
GECCO-99: Proc. of the Genetic and Evolutionary Computation Conf. Morgan
Kaufman Publishers, Inc., San Francisco (1999) 1750-1755.

31. Walker, R.L.: Development of an Indexer Simulator for a Parallel Pseudo-Search
Engine. In: ASTC 2000: Proc. of the 2000 Advanced Simulation Technologies Conf.
SCS Press, San Diego, CA (April 2000) To Appear.

32. Walker, R.L.: Dynamic Load Balancing Model: Preliminary Assessment of a Bi-
ological Model for a Pseudo-Search Engine. In: Biologically Inspired Solutions
to Parallel Processing Problems (BioSP3). Lecture Notes in Computer Science.
Springer-Veglag, Berlin Heidelberg New York (2000) To Appear.

33. Walker, R.L.: Implementation Issues for a Parallel Pseudo-Search Engine Indexer
using MPI and Genetic Programming. In: Ingber, M., Power, H., Brebbia, CA.
(eds.): Applications of High-Performance Computers in Engineering VI. WIT
Press, Ashurst, Southampton, UK (2000) 71-80.

34. Walker, R.L., Ivory, M.Y., Asodia, S., Wright-Pegs, L.: Preliminary Study of Search
Engine Indexing and Update Mechanisms: Usability Implications. In: Shin, S.Y.
(ed.): CATA 2000: Proc. of the 15th Intl. Conf. on Computers and their Applica-
tions. ISCA Press, Cary, NC (2000) 383-388.

35. Wetherall, D.J.: Developing Network Protocols with the ANTS Toolkit. Design
Review (1997).

36. Willis, M.J., Hiden, H.G., Marenbach, P., McKay, B. Montague, G.A.: Genetic
Programming: An Introduction and Survey of Applications. In: Proc. of the 2nd
Int. Conf. on Genetic Algorithms in Engineering Systems: Innovations and Appli-
cations. IEE Press, London (1997) 314-319.

146-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

A novel collective communication scheme on packet-

switched 2D-mesh interconnection

MinHwan Ok and Myong-Soon Park

Internet Computing Laboratory

Department of Computer Science and Engineering, Korea University

Sungbuk-ku, Seoul 136-701, Korea
{mhok, myongsp}@ilab5.korea.ac.kr

Abstract. Recently, cluster computing which employs many cheap node

machines is going to replace expensive supercomputers. However, there exist

only a few of enhanced communication schemes for cheap packet-switches,

especially in case of collective communication. We devised a new collective

communication scheme from original dimension-order routing. The proposed

scheme mainly aims at non-uniform traffic situation by communication locality

that causes longer communication delays than that in uniform-traffic situation.

By addition of 'flow bit' in each packet, packets can traverse alternating their

directions at hop by hop. The new scheme is devised for 2D mesh and

enhanced the original X-Y routing.

1. Introduction

There are broadly two categories of parallel computers with respect to the types of

their memories. These physical models are distinguished by having a shared

common memory among each processor or unshared distributed memory in each

processor. In both, interconnection between processors or memories considerably

affects whole processing capacity of the parallel computer.

Interconnection networks are classified into two major classes primarily based on

interconnection topology. If all adjacent nodes are connected to each other with

direct link, the interconnection is called direct network. Otherwise, the network is

called indirect network. The direct network or point-to-point network consists of a

set of nodes, each one being directly connected to a subset of other nodes in the

network. Each node is a programmable computer with its own processor, local

-147-

FEUP - Faculdade de Engenharia da Universidade do Porto

memory, and other supporting devices. These nodes may have different functional
capabilities. As the number of nodes in the system increases, the total
communication bandwidth, memory bandwidth, and processing capability of the
system also increase. Thus, direct networks have been popular interconnection
architecture for constructing large-scale parallel computers.

When the network traffic is non-uniform, there is the probability of a phenomenon
which one node or a subset with a few nodes accounts for a disproportionately large
portion of the total network traffic. This phenomenon is inherent from parallelizing
of the entire work. It is crucial if the phenomenon arises often from short
communications occurring frequently in fine-grained parallel processing and incurs
many short delays that eventually make entire processing slow. The more frequent
messaging, the higher probability of the phenomenon.

Mesh is one of popular interconnection networks among many direct networks.
Till now, mesh interconnection necessarily facilitated wormhole switching.
Recently, cluster computing which employs many cheap node machines is going to
replace expensive supercomputers. However, there exist only a few of enhanced
communication scheme for cheap packet-switches, especially in case of collective
communication. We devised a new collective communication scheme from original
dimension-order routing.

This paper comprises 5 sections: the introduction, prior studies on non-uniform
traffic, a novel routing scheme of mesh, comparison with simulation and summary of
the novel scheme.

2. Prior Studies on Non-uniform Traffic

One major cause of non-uniform traffic is not-even data-access. As much traffic
was necessitated around any particular location, this phenomenon is called 'hot spot'.
Another major cause is group communication among processors including such as
global synchronization operation.

Contention caused by accesses to the hot spot is notorious for degrading
performance of a parallel algorithm [1]. The approach incorporates certain hardware
in the interconnection network to trap and combine access requests for hot spot relief.
However, the cost overhead due to added hardware posed a major concern. A less
costly hardware combining techniques was introduced in [4]. Combining messages
reduces communication traffic and decreases the average amount of buffer space
used, what leads to a lower average network delay time. The delay time experienced
by a message traversing a buffered multistage network could be enhanced with
message combining under hot spot traffic, also in hardware, in [2] and [3].

-148-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Like non-uniform traffic, blocked message also disturbs fluent network traffic.
Deadlock-free routing and adaptive routing were proposed to prevent low network
utilization from slowdown in propagation of messages [5] [6]. Deadlock or
saturation of the message routes has the potential to degrade system performance in
terms of lower throughput and higher latency similar to that of hot spot.

Recent approaches to alleviate the effect of non-uniform traffic are shown in
variety.

Lee and Chen have proposed an allocation method of hot spots on mesh [7].
They divided hot spots into two classes, one to be uniform and the other to be non-
uniform. They have presented how to minimize hot spot access time in case of
uniform hot spot. However, They let the case of non-uniform hot spot opened.
Wang et al. has used extra paths to alleviate hot spot problem on multipath MIN [8].
Their approach is to force all hot spot messages to choose some predefined paths and
non-hot spot messages not to choose the paths that involve any interchange boxes in
the saturated area or to have only limited overlap. In the approach, additional links
are necessary thus additional hardware cost is imposed. Fu and Tzeng have
proposed a scheme to keep synchronization traffic low and avoid hot spot contention
for shared memory systems [9]. Their scheme constructs a circular list of processors
waiting for the critical section by dispersing access to the lock. The scheme is also
founded on MIN. Basak and Panda have used multiple consumption channels than
single one for each processor on wormhole-routed k-ary n-cube [10]. Their
approach is to analyze various factors of interconnection network with message
consumption, and derive the minimum number of required consumption channels for
alleviating consumption bottleneck. In the approach, additional channel per processor
is necessary thus additional hardware cost is also imposed.

3. A Novel Routing Scheme of Mesh

Many approaches have been proposed for efficient collective communication with
wormhole switching [11]. Among the approaches, there are mainly two
methodologies of either tree-based or path-based. Tree-based and path-based
routings require message partitioning and contention-free condition, to reduce
blocking time, respectively. They use wormhole-routers for interconnection and the
routers are rather expensive. If routers do not support special functions such as
wormhole switching, the approaches cannot be exploited. However, suggested
routing schemes for collective communication with little special functionality are
relatively rare.

-149-

FEUP - Faculdade de Engenharia da Universidade do Porto

From the programmer's view, the unit of information exchange is a message. For
efficient and fair use of network resources, a message is divided into packets prior to
transmission. Message passing is divided into two classes, one for point-to-point
communication and the other for collective communication. When packet switching
is applied, collective communications essentially incur non-uniform traffic situation.
Where the non-uniform traffic situation arise, the center of the situation, becomes 'hot
spot.' As analyzed in [1], each node around 'hot spot' gets its buffer full, incurring
concentrated messages suffer high latency due to wait times in each node's buffer.
Moreover, this phenomenon has influence upon messages that pass by around the
location. Thus, it is necessary that collective communications should be concerned
with separate scheme from that of point-to-point communication to alleviate the effect
of non-uniform traffic.

There are many routing schemes according to interconnection topologies. Among
the topologies, mesh is one of most popular topologies. In this paper, we consider
2D mesh of 7x7 size. In this interconnection, all the boundary nodes are to send
their packets to the one center node. Deterministic dimension-order routing, X-Y
routing, is the routing scheme and packet switching is applied.

To simplify the analysism we assume that;
< Assumption >
1. Each node has 4 links of which are directing to north, south, west, and east,

respectively.
2. A packet transfers by one hop for one unit time.
3. A link is also capable of a packet transmission for one unit time.
4. The packet length is fixed and suitable for the transmission in one unit time.

Let's see only east-southern part of the whole of nodes. The other three parts are
the reflections and show the same characteristics.

{A} X-Y Routing {B} The New Routing

Fig. 1. Collective communications in east-southern part of 7x7 mesh

-150-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

In figure {1-A}, 4 packets suffer conflicts along the leftmost vertical path. Nodes

at the same diagonals transmit packets that would conflict at nodes close to the center

node between the conflicting packets' Y-dimensional displacements along the

leftmost vertical path. For there is one link for each direction and only one packet

transfers along that link for one unit time, packets remained are accumulated at the

vertical nodes.

When the number of used links are investigated, there are many idle link during

packet transmissions. Only one of conflicting packets advances and the other

packets are to be remained in buffer waiting for its order in queue. If the idle link

can be used for packet transmission, the number of conflicts can be reduced. The

conflict occurs when both the horizontal link and the vertical link receive packets with

the same next direction. Thus, some conditions are set here;

< Condition >

1. When a packet comes in the node through any horizontal link, it should go out the

node through any vertical link.

2. When a packet comes in the node through any vertical link, it should go out the

node through any horizontal link.

And a theorem;
< Theorem >

For the times the above conditions are satisfied, a node of 2D mesh is able to receive

packets with 2 adjacent links at the same time and it is able to send them

simultaneously with the other 2 adjacent links at the next time if the node's buffer has

no packet to send prior to them.

By the theorem, we can set the packet's next directions in advance to make use of

the links at higher utilization. The theorem is to avoid conflicts of next directions.

From the idea, a new routing scheme permits packet transmission at every node

that alternates its direction heading for its destination. The new scheme is described

in <Älgorithm>.

In figure {1-B}, new routing scheme makes use of vertical idle links from the

figure {1-A}. To keep high the utilization of links, as previously mentioned, both

the horizontal link and the vertical link should receive packets at same time as little as

possible in this "one packet transmission for one unit time" network model. With

the same preset 'flow bit' of each packet, every packet flows with the same direction,

until no conflict occurs. The same direction of every packet ensures them against

conflict. Where a conflict occurred, the other packet is to be remained in buffer.

As all the packets approach either X-axis or Y-axis in the first halves of their routes,

when compared with the original X-Y routing, there are two advantages in the new

-151-

FEUP - Faculdade de Engenharia da Universidade do Porto

scheme. One is lower possibility of conflicts and the other is higher utilization of
available links.

I. Initialization
Let every packet has its flow bit.
Every flow bit is set 0.
Each flow bit is set before the first transmission.

II. Routing
For the case of flow bit;
0 : Advance along Y-dimension. Change the flow bit to 1.

If Y coordinates, advance along X-dimension.
1 : Advance along X-dimension. Change the flow bit to 0.

If X coordinates, advance along Y-dimension.

< Algorithm > A novel routing algorithm for 2-D mesh

4. Simulation

An important metric to evaluate a network throughput by a modified routing
scheme is communication latency, which is the sum of three values: start-up time,
transmission latency, and blocking time. The start-up time is the time required for
message framing/unframing, memory/buffer copying, validation, and so on. The
transmission latency is the time elapsed after the head of a message has been injected
into network at the source node until the tail of the message is extracted from the
network at the destination node. The blocking time includes all possible delays
encountered during the lifetime of a message. For given a source and destination
node, the start-up time and the transmission latency are static values. In this paper,
we define the parameters as follows for simplicity and ease of comparison:

Transmission latency: latency by a packet to traverse its route until arrival at the
destination
Blocking time: elapsed time in a node buffer due to busy communication link in use

The start-up time is not considered and it is relatively very small and fixed time.
Thus communication latency C of one packet is defined as follows;

-152-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

C = T + B, (l)

where T is the transmission latency and B is the blocking time. Since we
assumed that one packet is transmitted along one link for one unit time, T is same as
the hop count. The blocking time is same as the number of unit times for wait time
in the buffer. Therefore, blocking time of X-Y routing is 4 unit times while that of
new routing scheme is 0 unit times in case of <Fig 1>.

Let us consider the case of all-to-one collective communication in <Fig.2>. All
the nodes are to send their packets to the one center node, one packet per one node
and we see only east-southern part of 7x7 mesh.

With original X-Y routing, every packet goes through X-path in the first half of the
transmission and through Y-path in the second half of the transmission. In figure
{2-A}, 3 of 4x4 packets should go through Link 2 and the others should go through
Link 1. If only this east-southern part is considered, that results in at least 12 unit
times as communication latency since 4x3 packets should go through Link 1. With
new routing, every packet goes through X-direction and Y-direction alternately in the
transmission. In figure {2-B}, 9 of 4x4 packets go through Link 2 and the others go
through Link 1. Again if only this east-southern part is considered, that results in at
least 9 unit times as communication latency since 1+2+3+3 packets should go through
Linkl.

Partition 2

Partition 3

{A} X-Y Routing {B} The New Routing"

Fig. 2. All-to-one collective communications with X-Y routing and with the new routing

For ease of comparison, suppose each node has two queues, one for packets that
come in through X-dimensional link, say X-queue, and the other for packets that
come in through Y-dimensional link, say Y-queue. We put packets of X-queue in
higher priority so packets of Y-queue cannot advance until X-queue empties. Then
with X-Y routing, packets from nodes of Partition 1, those from Partition 2, and those
from Partition 3 would arrive at the destination in sequence of Partitions. With the

-153-

FEUP - Faculdade de Engenharia da Universidade do Porto

new routing, packets from Partition 1 and Partition 2 would arrive at the destination in
parallel.

As the final packet arrived at the destination determines the collective
communication time, the packet from 'node F' finishes the collective communication
in either routing. In figure {2-A}, packets from Partition (m) cannot advance along
Y-dimension until packets from Partition (m-1) do. For nxn mesh, the
communication latency of the final packet in all-to-one collective communication
with X-Y routing;

Cxy=nm, (2)

where m is the number of Partitions. For nxn mesh, the communication latency
of the final packet in all-to-one collective communication with new routing;

CNovel=nm-^(2k-\) = nm-m2, (3)
where m is the number of Segments in a Partition and a Segment is each row in the

Partition. For nxn mesh,

n = 2m+\. (4)

Thus communication latencies of both routings are;

CXY =2/M2 +m, (5)

and

CNovel=m2+*n. (6)

The new routing scheme is simulated under previously stated <Assumptiori>.
Topology is 16x16 2D-mesh and packet switching is applied. Distribution of
message locations is random uniform, and the collective messages are to come to one
center node. <Fig. 3> shows comparison of the original X-Y routing and the new
scheme. In addition to collective messages, there also exist another point-to-point
messages. It is to examine whether the new routing scheme has aided packets pass
by around the center node by reducing conflicts. The total of messages is 128 for
every case. The number of collective messages is same with the number of nodes in
the collective communication group, and the number of point-to-point messages is the
remainder. In the new scheme, collective communication routing is the new devised
one and point-to-point routing is the original X-Y one.

-154-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

4500

-•-X-Y collective;

-•-New collective'

X-YfHo-p :

~«~NewcHo-p !

16 32 64

Collective Communication Group Sze

Fig. 3. Comparison of sum of communication latencies on 16x16 mesh

In <Fig. 3>, we can see the new scheme perform better than the original X-Y as the
number of collective messages increases. It is due to messages that form two rows on
either axis heading for the destination. <Fig. 4> shows comparison of the largest
latencies in both collective communications.

■X-Y
collective

■New
collective

"" 16 32 64 128

Collective Communication
Group Size

Fig. 4. Comparison of the largest communication latency with either routing

15«"-

FEUP - Faculdade de Engenharia da Universidade do Porto

5. Summary

The proposed scheme mainly aims at non-uniform traffic situation by

communication locality that causes longer communication delays than that in

uniform-traffic situation. Collective communication or operation including broadcast,

scatter, gather, and reduce essentially incur non-uniform traffic situation since at least

acknowledgements are required in any communication. By addition of 'flow bit' in

each packet, packets can traverse making use of idle links. The new scheme is

devised for 2D mesh and enhanced the original X-Y routing. Compared with the

original X-Y routing, there are two advantages in the new scheme, one is lower

possibility of conflicts and the other is higher utilization of available links. Simulation

results that when traversing packets' lengths are all the same, reducing the wait time

in buffer by making use of available links shows a consequence of lower

communication latency. This new scheme is devised for cheap packet-switches, and

expected to contribute toward constructing cluster's interconnection for more efficient

collective communication with slightly increased implementation cost.

References

1. G. F. Pfister and V. A. Norton, "Hot spot contention and combining in multistage

interconnection networks," IEEE Trans. Computers, vol. 34, pp. 943-948, Oct. 1985

2. G. Lee, "A performance bound of multistage networks," IEEE Trans. Computers, vol. 38,

pp. 1387-1395, Oct. 1989

3. B. -C. Kang, G. Lee, and R. Kain, "Performance of multistage combining networks," Proc.

1991 Int. Conf. Parallel Processing, pp.550-557, Aug. 1991

4. N. -F. Tzeng, "A cost-effective combining structure for large-scale shared-memory

multiprocessors," IEEE Trans. Computers, vol. 41, pp. 1420-1429, Nov. 1992

5. J. Duato, "A new theory of deadlock-free adaptive routing in wormhole networks," IEEE

Trans. Parallel and Distributed Systems, vol. 4, pp. 1320-1331, 1993

6. Y. M. Boura and C. R. Das, "Efficient fully adaptive wormhole routing in n-dimensional

meshes," Proc. Int 7 Conf. Distributed Computing Systems, pp. 589-596, 1994

7. S. -Y. Lee, C. -M. Chen, "Optimal hot spot allocation on meshes for large-scale data-

parallel algorithms," IEEE Trans. Parallel and Distributed Systems, vol. 6, pp. 788-802,

Aug. 1995

8. M. -C. Wang, H. J. Siegel, M. A. Nichols, S. Abraham, "Using a multipath network for

reducing the effect of hot spots," IEEE Trans. Parallel and Distributed Systems, vol. 6, pp.

252-268, Mar. 1995

-15*-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

9. S. S. Fu, N. -F. Tzeng, "A circular list-based mutual exclusion scheme for large shared-

memory multiprocessors," IEEE Trans. Parallel and Distributed Systems, vol. 8, pp. 628-

639, Jun. 1997

10. D. Basak, D. K. Panda, "Alleviating consumption channel bottleneck in wormhole-routed

k-ary n-cube systems," IEEE Trans. Parallel and Distributed Systems, vol. 9, pp.481-496,

May 1998
11. P. K. McKinley, D. F. Robinson, "Collective communication in wormhole-routed

massively parallel computers," IEEE Computer, vol. 28, pp. 39-50, Dec. 1995

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Enhancing Parallel Multimedia Servers through
New Hierarchical Disk Scheduling Algorithms

Javier Fernandez, Felix Garcia, Jesus Carretero

Dto. de Informätica, Universidad Carlos III de Madrid,
Avda. Universidad 30, Leganes , 28991, Madrid, Spain,
{jfernand, fgaxcia, jcarrete}Qarcos.inf.uc3m.es

Abstract. 1 An integrated storage platform for open systems should
be able of meeting the requirements of deterministic applications, mul-
timedia systems, and traditional best-effort applications. It should also
provide a disk scheduling mechanism fitting all those types of applica-
tions. In this paper, we propose a three-level hierarchical disk scheduling
scheme, which has three main components: metascheduler, single server
scheduler, and disk scheduler. The metascheduler provides scheduling
mechanisms for a parallel disk system or a set of parallel servers. The
server level is divided in three main queues: deterministic, statistic and
best-effort requests. Each server may have its own scheduling algorithm.
The lower level, disk driver, chooses the ready streams using its own
scheduling criteria. Those systems have been implemented and tested,
and the performance evaluations demonstrate that our scheduling archi-
tecture is adequate for handling stream sets with different timing and
bandwidth requirements.

1 Introduction

Over the last years, there has been a great interest on the scheduling of I/O de-
vices, usually disks, in computer systems [16,9]. However, the requirements and
the platforms for both multimedia and general systems seemed to be so different
[7], that people developed specialized systems. Thus, disk scheduling algorithms
for general purpose systems tried to reduce the access time, while multime-
dia systems tended to satisfy the real-time constraints for cyclical streams, even
loosing performance. With the multimedia applications increasing, some authors
[15] have proposed the design of a new kind of system, named integrated, that
include facilities to support heterogeneous multimedia and general purpose in-
formation. In an integrated system, the user may request the start of a new
I/O request (stream) during run-time. The system must determine, following
some admission criteria, whether the stream is schedulable to admit or reject

1 This work has been supported in part by the NSF Award CCR-9357840, the contract
DABT63-94-C-0049 from DARPA and by the Spanish CICYT under the project
TIC97-0955

- 159-

FEUP - Faculdade de Engenharia da Universidade do Porto

the stream. The main problem with most of those systems is that they do not
provide schedulability guarantees for deterministic applications [6].

In this paper we describe a hierarchical three-level disk scheduling scheme,
which is actually used in MiPFS, a multimedia integrated parallel file system [3].
The scheduler has three main components: metascheduler, single server sched-
uler, and disk scheduler. The metascheduler provides a scheduling mechanisms
for parallel disk system or a set of parallel servers. The server level of the archi-
tecture, is divided in three main queues: deterministic, statistic and best-effort
requests. Each server may have its own scheduling algorithm. The lower level,
disk driver, chooses the ready streams using its own scheduling criteria. We also
propose an adaptive admission control algorithm relying on worst and average
values of disk server utilization. Only streams satisfying the admission algo-
rithm criteria [2] are accepted for further processing by the disk server. Section
2 presents some related works. Section 3 describes the multi-level architecture of
our scheduling scheme, including the extension to a parallel disk system. Section
4 presents some performance evaluations of our scheduling architecture, which
were first simulated, and then implemented and tested. Finally, section 5 shows
some concluding remarks and future work.

2 Related Work

There are well known techniques to schedule deterministic real-time tasks [14,
13]. However, most of them are oriented to fixed priority scheduling, or at most to
dynamic priority scheduling in very specific situations. However, in I/O devices,
the timing requirements of many streams are not known in advance, thus a
global scheduling analysis can not be done [12]. The priority of the streams must
be dynamically computed taking into account parameters, such as time, disk
geometry, and quality of service granted to the application. Several algorithms
have been proposed to satisfy this timing constraints in multimedia systems:
EDF gives the highest priority to I/O streams with the nearest deadline [19],
SCAN-EDF order the I/O streams by deadline and the stream with the same
deadline by ascending order [16], and SCAN-RT orders the streams using an
ascending order but taking into consideration the deadlines [11,5]. However,
none of them addresses the problem of integrated environments, where multiple
types of streams must be scheduled. An integrated scheduling scheme should
try to reduce the answer time to best-effort requests, but it should also provide
a time guided disk scheduler giving more priority to real-time stream with the
nearest deadline. Because most of the disk scheduling schemes proposed up to
now can hardly make a good trade-off between the former aspects, some multi-
level hierarchical scheduling architectures have been proposed for deterministic
tasks in an open environment [6], and for integrated multimedia systems [15]. In
essence, those schemes create a slower virtual device for each stream or for each
class of streams.

We have implemented our scheduling architecture, shown in the next section,
on a multiprocessor running LINUX [1,18]. We have chosen LINUX for several

160-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

reasons: it is free, it is updated, and it can include new modules into the OS
without modifying the kernel continuously. The last feature is very useful to test
different scheduling policies easily.

3 Parallel Disk Scheduler Architecture

Figure 1 shows the scheduling architecture proposed for MiPFS. First, the archi-
tecture for a single server is described. Then, it is scaled up to show the parallel
scheduler architecture (metascheduler). Both components are described below.

Admission Load
Control Distribution

QoS
Control

Meta Scheduler

Disk Scheduler

Data

Ready
Request j

Disk

[Disk Scheduler j

♦ 1 -

i

Data

Ready
Request |

Disk

Disk Server 1 Disk Server 2 Disk Servern

Fig. 1. Parallel Disk Scheduling System Architecture

3.1 Single Server Architecture

Each server scheduler consists of two levels. An upper level with three stream
server schedulers: deterministic, statistic, and best-effort streams. A lower level
including a disk driver scheduler D, a ready queue R, and a disk. Thus, each
scheduling decision involves two steps. First, each server scheduler receives streams,
and, based on its particular scheduling algorithm, inserts them into correspond-
ing place in its queue. Second, when the disk is free, D chooses one stream

161 -

FEUP - Faculdade de Engenharia da Universidade do Porto

among the upper level queues, using its own scheduling algorithm, and put it
into R. Statistic real-time streams allow a certain percentage of deadline misses,
as far as the quality of service (QoS) of the client could be met, the service is
deemed OK. Deterministic real-time streams do not allow any misses. In our
prototype, the disk scheduling algorithm used at the server's level are: EDF for
deterministic, SCAN-EDF for statistic, and SCAN for best-effort streams. The
disk driver scheduler D chooses the stream to be executed next based on the
dynamic priorities previously computed. In our hierarchical system, each server
queue has a different priority that is used by D as a criteria to choose ready
jobs. However, using only this priority criteria will be unfair for best-effort and
statistic applications, leading to a high percentage of deadline misses, streams
without a deadline.

To insert the streams into the servers queues, two major parameters are
used in our scheduling scheme: deadline and service time. The service time is
totally application dependent because it depends on the track number, while
the deadline of a stream may be modified depending on the stream properties.
Two kinds of deadlines are considered for a specific stream: application deadline,
d, which is the one set by the application through the driver interface or other
operations, such as QoS negotiation; scheduling deadline, I, which is a virtual
deadline internally used by the disk scheduler and computed by the server's
scheduler, so that I < d. The computation of the virtual deadline / is different
for each kind of stream. For a best-effort request, I is originally set to a very
large value that can be dynamically modified. For a statistic stream, I is the
same as its actual deadline d. A dynamic priority is then computed, based on
the former parameters, and assigned to the request.

The intuition after our policy is that if the density of real-time streams is high,
more disk serving time should go toward real-time streams. Otherwise, best-effort
requests could be served, because the deadlines of the currently most urgent real-
time streams are not likely to be missed even if the disk server turns to serve some
best-effort requests firstly. As the results shown in section 4 corroborate, our
scheduling architecture has two major features related to other disk scheduling
schemes. First, the deterministic streams deadlines can be always met for streams
admitted. Secondly, the average waiting time for best-effort requests is small.

Obviously, scheduling deterministic streams with high priority means again
that some statistic streams would miss their deadlines. An alternate approach
can be used to reduce the number of missed deadlines: temporal degradation
of the QoS of some streams. Usually some statistic applications, such as video-
conferencing, can degrade temporally its QoS to benefit other deterministic ap-
plications, such as telesurgery. To use this scheme, each stream should specify
the average QoS required and the percentage of temporal degradation during a
maximum time. Then, the priority of its requests could be reduced to satisfy the
new requirements.

162-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

3.2 Metascheduler Architecture

The meta-scheduler (Figure 1) is a coordinator, whose function relies in three
aspects: decomposing the incoming streams and dispatching them to the corre-
sponding disk servers; gathering portions of data from different disk servers and
sending them back to the applications; and coordinating the service to a specific
stream among different disk servers. The first two functions are included into
the parallel disk system interface, while the third one is internal and acts as an
intelligent inspector among different disk servers. When a new stream arrives,
it is decomposed into substreams by the meta-scheduler and each substream is
sent to the appropriated disk server. The meta-scheduler gathers the informa-
tion from the servers and returns to the application the status of the admission
tests: successful if all disk servers admitted the new stream, failed in other cases.
When successful, the meta-scheduler asks the disk servers to commit the re-
sources. A problem incurred with stream distribution is that some substreams
could be successful while other could fail. The meta-scheduler gathers the status
of the substreams and, if there are some deadline misses and the QoS is below
the required, notifies a failure to the application. Moreover, it notifies to the re-
maining involved servers to abort the stream and to release the budget allocated
to this stream. To accomplish it, each stream is assigned a unique id number,
which is shared by all of its sub-streams , and inserted in a stream dispatching
table. Whenever a disk server fails to serve a sub-stream, the meta-scheduler is
informed. According to the unique id number, the meta-scheduler changes the
status of all the sub-stream corresponding to this stream to failed, informing
other disk servers of this situation. As a result, all the pending sub-streams of
this stream are deleted from the queue in each disk server, and the resources are
freed. This policy avoids wasting resources on failed streams, transferring those
resources to other successful streams.

4 Performance Evaluation

The performance results presented in this section were collected on a Silicon
Graphics Origin (SGO) machine located at the CPDC of Northwestern Univer-
sity, and on a Pentium biprocessor, with four disks, located at the DATSI of
Universidad Politenica de Madrid. The SGO was used to test the scalability of
our solution on a parallel system including several servers. To test the perfor-
mance and behavior of our solution, a video server and several remote clients
were used. The video server transmitted several movies attending to client re-
quests. The duration of the movies were 30 minutes approximately.

To test the features of the scheduler, with different scheduling policies, four
parameters were studied and evaluated:

1. Disk bandwidth. Several processes executing simultaneous read/write opera-
tions.

2. Disk answer time. Several video streams executing read operations simulta-
neously to best-effort requests.

163-

FEUP - Faculdade de Engenharia da Universidade do Porto

3. Single server performance. Several video clients accessing MPEG videos
through a 100 Mb/s Ethernet.

4. Parallel server performance Several video clients accessing MPEG videos
sorted on several servers through a high bandwidth bus.

The former experiments were executed using several popular disk scheduling
policies (FIFO, SCAN, CSCAN, EDF, and SCAN-EDF) to compare them with
our 2-Q algorithm.

Figure 2 shows the aggregated bandwidth for a single disk using several
scheduling policies. It shows that the bandwidth is higher for 2-Q than for the
other algorithms. Specifically, the results of 2-Q are better than those of CSCAN,
which is typically used in disk drivers. These results can be explained because
the deterministic requests are prioritized over the best-effort ones when using
our scheduler. By doing that, more contiguous I/O requests are sent to the disk,
and the seek time is reduced.

700

c o o
w

ä

T3

600

500^

400
i

300

200

100

0
1

♦ FIFO
▼ SCAN
A CSCAN
► 2-Q

3 4 5 6 7
Number of Processes

Fig. 2. Disk bandwidth with different scheduling policies

Moreover, as shown in figure 3, our scheduler has a better response time for
best-effort requests than those of EDF and SCAN-EDF, typically used in contin-
uous media systems. These results can be explained because of the opportunistic
behavior of our disk driver scheduler, that serves best-effort requests in CSCAN
order whenever it has some free time in a round. It not only reduces the answer
time, but also minimizes the average seek time for best-effort requests. Those
features are not present in EDF or SCAN-EDF.

164-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

1000

CO ffi
3
cr
<D
cr

c ^
O <n
c "O

o o
•= Ü

CO

100

10

0)

3

-OCSCAN
-xEDF
-* SCAN-EDF

3 4 5 6 7 8 9 10 11 12
Number of Periodic Streams

Fig. 3. Response Time for Best Effort Requests.

To test the performance of a single server, we used several video clients ac-
cessing MPEG videos through a 100 Mb/s Ethernet. All the videos were stored
on a single server (the Pentium machine). Several priority levels were used to
accomplish this test. Figure 4 shows that dynamic priorities provide better per-
formance and QoS than policies with fixed priority.

To evaluate the behavior of our parallel disk server scheduler, an increasing
workload was applied to a parallel disk server whose number of disk servers was
varied from 1 to 16. This experiment was executed on the SGO machine. We
wanted to measure the maximum number of statistic streams (periodic) served
before having a deadline miss. Figure 5 shows the results of test 4. The workload
was composed of deterministic sporadic streams, statistic periodic streams, and
best-effort requests. As can be seen, the 2-Q algorithm always provides the same
or better results than the others. That means that 2-Q can serve more statistic
clients before having a deterministic deadline missed.

5 Summary and Concluding Remarks

In this paper, we presented a solution for the scheduling problem in a paral-
lel integrated storage platform which can satisfy the requirements of real-time
applications, multimedia systems, and traditional best-effort applications. First,
we motivated the need of such a solution, then presented the architecture used
in our 2-Q scheduling architecture. 2-Q has a hierarchical two-level architecture

165-

FEUP - Faculdade de Engenharia da Universidade do Porto

T3
C
o u
u
05

U

I-,

22.5

20

17.51

15

12.5{

10

7.5

5

2.5

0
Best-Effort Deterministic

Fig. 4. Influence of priority on the number of frames per second

where the upper level, or server level, is divided in three queues for deterministic,
statistic and best-effort requests, each one using a scheduling algorithm specific
for that server. The solution proposed for one disk served was generalized for a
parallel disk server by using a meta-scheduler to control the achievement of the
deadlines of a parallel stream.

Performance evaluations, made on a Pentium biprocessor and a SGO ma-
chine, demonstrate that our scheduling architecture is adequated for handling
stream sets with different deterministic, statistic, or best-effort requirements.
Moreover, it maximizes the bandwidth of the disk, while minimizing the aver-
age answer time for best-effort requests. The results of the evaluation of the
parallel disk scheduling architecture demonstrates that the fact of satisfying the
deterministic requested does not diminished the scalability of the solution when
several disks are used.

References

1. Beck M., Bhme H., Dziadzaka M., Kunitz U., Magnus R., Verworner D. Linux
Kernel Internals. Second Edition. Ed: Addison-Wesley, 1998

2. Carretero,J., Zhu,W., Shen, X. and Choudhary, A. MiPFS: A Multimedia Integrated
Parallel File System International Joint Conference on Information Systems, October
23-28, 1998. Research Triangle, Raleigh, North Carolina, USA.

166-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

250.0

50.0

0.0

~i r

200.0

150.0

100.0

-
K8?T ^

CSCAN
EDF

0)

CO
(0
E
as
w w

CO
Ü

SCAN-EDF
2Q

g

a.

12 4 8
Number of Disks

Fig. 5. Number of Periodical Clients Served.

3. Carretero J., Zhu W., and A. Choudhary A. Design and Evaluation of a Multime-
dia Integrated Parallel File System IEEE International Conference on Multimedia
Computing and Systems ICMCS'99, Florence, Italy, June 7-11, 1999.

4. Carretero J., Zhu W., and Choudhary A. Hierarchical Scheduling for Disk I/O in
an Integrated Environment ISCA 14th International Conference on Computers and
Their Applications, Cancn, Mexico, April 7-9 1999.

5. S. Chaudhry and A. Choudhary. Scheduling algorithms for guaranteed service.
Technical report, CASE Research Center, Syracuse University, August 1996.

6. Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open environ-
ment. In Proc. IEEE Real-Time Systems Symposium, pages 308-319, San Francisco,
California, December 1997.

7. D. Makaroff G. Neufeld and N. Hutchinson. Design of a variable bit-rate continuous
media server for an atm network. In Proc. of the IST/SPIE Multimedia Computing
and Networking, San Jose, CA, USA, Jan 1996.

8. J. Gemmel. Multimedia network file servers: Multi-channel delay sensitive data
retrieval. In ACM, editor, Proceedings of the ACM Multimedia'93, pages 243-250,
1993.

9. S. Ghandeharizadeh, S.H. Kim, and C. Shahabi. On configuring a single disk con-
tinuous media server. In ACM SIGMETRICS '95, pages 37-46, 1995.

10. J.L. Hennesy and D.A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan-Kaufmann, 2nd edition, 1995.

11. I. Kamel and Y. Ito. Disk bandwidth study for video servers. Technical Report
148-95, Matsusita Information Technology Laboratory, April 1996.

167-

FEUP - Faculdade de Engenharia da Universidade do Porto

12. H. Kaneko, J.A. Stankovic, S. Sen, and K. Ramamritham. Integrated schedul-
ing of multimedia and hard real-time tasks. Technical Report UM-CS-1996-045.ps,
Computer Science Department. University of Massachusetts, August 1996.

13. J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm - exact
characterization and average case behavior. In Proc. of the IEEE Real-Time System
Symposium, pages 166-171, 1989.

14. C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real
time environment. Journal of the ACM, 20(1):46-61, January 1973.

15. Sriram Rao Prashant Shenoy, Pawan Goyal and Harrick Vin. Symphony: An inte-
grated multimedia file system. In Proc. of the SPIE/ACM Conference on Multimedia
Computing and Networking (MMCN'98), San Jose, CA, USA, 1998. Also available
as Technical Report TR-97-09, Department of Computer Sciences, Univ. of Texas at
Austin.

16. A.L.N. Reddy and J. Wyllie. I/O issues in a multimedia system. IEEE Computer,
pages 69-74, March 1994.

17. C. Ruemmler and J. Wilkes. Multimedia storage servers: A tutorial. IEEE Com-
puter, 27(3):17-28, March 1994.

18. Rusling D. A. The Linux Kernel. Linux Documentation Project, 1998
19. M. Sohn and G.Y. Kim. Earliest-deadline-first scheduling on nonpreemptive real-

time threads for continuous media server. In Proc. of the High-Performance Com-
puting and Networking'97, 1997.

20. H.M. Vin, P. Goyal, and A. Goyal. A statistical admission control algorithm for
multimedia servers. In ACM, editor, In Proceedings of the ACM Multimedia '94, pages
33-40, San Francisco, October 1994.

168-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

A Parallel VRML97 Server
Based on Active Objects

Thomas Rischbeck and Paul Watson
{Thomas.Rischbeck* I Paul.Watson}@ncl.ac.uk

Department of Computing Science, University of Newcastle
Newcastle Upon Tyne, NE1 7RU United Kingdom

April 1, 2000

Abstract

The Virtual Reality language, VRML97, allows the creation of dy-
namic worlds that respond to user interaction. However, the serial
nature of current VRML browsers prevents the full potential of the
language from being realised: they do not have the power to support
huge, complex worlds with large numbers of interacting users. This
paper presents the design of a scalable, parallel VRML server that
has been built to overcome this barrier. The server distributes the
task of storing and computing the changing state of the world across
a set of nodes. Clients connect to the server and receive information
on their current view of the world, which they can then render. The
parallel server is implemented in Java, utilising a new, active object
model called SODA (System Of Dynamic Active Objects) that is also
described in the paper.

Topics covered: Virtual Reality, Parallelism, Active Objects.

1 Introduction

The Virtual Reality Modeling Language (VRML) [CB97] allows three-di-
mensional worlds to be described in a platform-independent notation. A
world description can be downloaded over the Internet into a VRML browser
that allows the user to explore the world by navigating around inside it. The
first version of VRML supported only static, unchanging worlds. However,
the later VRML97 [CBM97] standard supports "moving" worlds that can be
both dynamic, and responsive to interaction between a user and the world.
It is therefore possible to envisage the creation of huge, complex worlds

'candidate for best student paper award

169-

FEUP - Faculdade de Engenharia da Universidade do Porto

with thousands of interacting users. For example, models of cities could
be built to include moving vehicles as well as the buildings. In the future,
with advances in traffic sensing technology, it may even be possible to build
models of real cities that show accurate traffic flows in real-time.

Despite the obvious potential, VRML worlds available on the Internet
have so far been relatively small, with little movement or interaction. This
is due to the nature of the VRML usage model, in which the description of
the VRML world is downloaded into the users browser and run locally. This
causes several problems:

•

•

downloading the complete world description to the VRML browser
takes a long time for large, complex worlds.

large worlds can have huge memory demands that a user's desktop
machine may not be able to satisfy.

• the user's desktop machine must both continually update the state of
the world (as objects move and the user interacts with it), and also
render a view of the world in the browser window. The processing
power required to do this may, for large complex worlds, be greater
than the user's machine can provide, and so the user may see slow,
jerky movement.

• because the world runs locally, in the user's browser, there is no pos-
sibility of interaction between different users in the same world. This
precludes both direct interaction between users who meet each other in
the world, but also indirect interaction, for example one user building
a structure that can be seen by others.

• it is much more difficult to arrange for the world to change in response
to external events. For example, if a virtual world models the current
state of part of the real world (e.g. traffic flow in a city, footballers
playing on a pitch) then we would wish to move the virtual world's
objects to reflect the real-time changes to the objects in the real world.

This paper presents the design of a system that has been built with the
aim of directly addressing these problems, and so supporting huge, complex
worlds filled with large numbers of interacting users.

Our design provides a client-server implementation of VRML, in which
a server holds the state of the virtual world. The state changes over time as
objects move, and users interact with the world. Many clients, each running
a VRML browser, can connect to the one server and so share a single world,
interacting with each other as required. When a client first connects to the
server, it receives only the set of geometric objects that are visible from
its initial starting position. This minimises download time. As the viewer
moves and interacts with the world, it receives from the server updates

170-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

to the position of any geometric objects in the field of vision that have
changed, and also information on any geometric objects that have become
visible. Therefore, the client has little work to do other than render its view
of the world. It makes sense to leave rendering to the client as PCs and
workstations have powerful graphics cards dedicated to this task.

A consequence of this architecture is that when supporting complex sys-
tems with many users, the server will have much work to do. We do not
want to just move the system bottleneck from the client to the server, and so
we have designed a scalable, parallel VRML server that allows the work of
computing the state of the world, and supporting clients, to be spread over
a set of nodes. The parallel server is implemented in Java, utilising a new,
active object model called SODA (System Of Dynamic Active Objects).

2 VRML Execution Model

In this section we give a basic overview of the VRML97 execution model,
focusing on those aspects that are important for the design of a parallel
implementation.

2.1 Basic Terminology

A VRML world is described in terms of an acyclic and directed scene graph
populated with nodes of various types and defined in one or more textual
files. The scene graph is hierarchically structured through grouping nodes,
which may contain other nodes as descendants; a Transform node, for ex-
ample, describes geometrical transformations that influence all descendant
geometric nodes.

VRML97 has 54 pre-defined node types, abstracting from various real-
world objects and concepts. They reach from basic shapes and geometry,
over grouping nodes and light sources to audio effects. Every node type
stores its state in one or more typed fields. Examples are a Transformation
node's translation, orientation and scaling fields, a Material's colour and a
SpotLighVs intensity.

Other nodes are responsible for driving and controling the dynamic be-
haviour of a scene, namely Sensor nodes, various Interpolator nodes and
Script nodes.

Sensor nodes are distinguished in that they are reactive to the passage
of time or to user interaction (e.g., "touching" of objects, user proximity,
etc.). If stimulated, a sensor node dispatches an event on one or more of
its eventOut fields (e.g., a TimeSensor can send an event at regular time
intervals on its cycleTime eventOut field). All events comprise a typed value
and a timestamp, which is determined by the sensor's trigger time. Events
can be propagated from the producing eventOut field along routes to the

171

FEUP - Faculdade de Engenharia da Universidade do Porto

eventin fields of other nodes. Upon receiving an event, nodes may change
their state, perform event processing or generate additional events. Routes
are determined by the edges of a directed routing graph that mediates one-
way event notification between nodes. The structure of this routing graph
is completely orthogonal to the scene graph hierarchy.

Event processing at a node can take the form of simple key-framed in-
terpolation as this is done by interpolator nodes. Script nodes are more
powerful in that they allow arbitrary, author-defined event processing and
generation. A world author can associate a Java or JavaScript function with
each eventin field.

2.2 Event Cascades

When processing an event that it has received, a node may not only change
its state, but also generate additional events. In this manner, a single sensor
event can trigger an event cascade involving a subset of the routing graph's
edges. All events in an event cascade are considered to occur simultaneously
and therefore carry the same timestamp as the initial sensor event. To
prevent infinite loops in a cyclic routing graph, every eventOut is limited to
at most one event per timestamp1.

Ideally, all events would be processed instantaneously in the order that
they are generated. However, in a real implementation, there will always
be processing delays. Furthermore, sensor nodes may generate events more
frequently than the resulting event cascades can be evaluated. The VRML97
specification addresses this issue by requiring implementations to evaluate
events in increasing order of timestamps. This ensures that implementations
produce deterministic results.

Multiple eventOuts may route to the same eventin, in what is called a
fan-in configuration. If events with the same timestamps arrive, they "shall
be processed, but the order of evaluation is implementation dependent."
([CBM97], paragraph 4.10.5)

2.3 Discrete and Continuous Events

Most events produced during world execution are discrete: they happen
at well-defined world times, e.g. as determined by the time of user in-
teraction. However, TimeSensor nodes also have the capability to model
continuous changes over time: A browser generates sampling events on the
fraction-changed and time eventOut fields 2 of TimeSensors. The sampling

xCalled loop breaking rule in VRML ([CBM97], paragraph 4.10.4.
fraction.changed describes the completed fraction of the current cycle as a float value

in the interval [0,1]; time sends the absolute time in seconds since Jan 1, 1970, 00:00:00
GMT as a floating-point value.

172-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

r \

TouchSensor

isOver
t«.^ ^ü ■■■—i .■■■■^■■•'m. J

w m ?

Fan-Out of // 1 >x-
the event to -t^ ' / V ^ other eventlns ,/

kSFBool, timestamp>

(e.g., if change f

is set to true,
send Red. if set

to false, send
BLUE on the
colour_changed
eventOut

Fan-Out, e.g., to
other Material Nodes

change

Script

colour_changed

o—\

|<SFColor, timestamp>

r-o ö
set_diffuseColor

Material

TimeSensor

time
fraction.
changed

kSFFloat, timestamp>

kSFFloat, timestamp>

set_fraction

Position
Interpolator

value_changed

set_fraction
Position

Interpolator
value_changed

|<SFVec3f, timestamp>

SFVec3f, timestamp>

(a) Discrete Initial Event (b) Continuous Initial Events driving an
Animation

Figure 1: Simple Event Cascades for Different Sensor Events (cir-
cles depict different field types: filled-B-eventOut, empty-H-eventln, semi-
filled -H-exposedField)

frequency is implementation dependent, but typically, samples would be pro-
duced once per frame—e.g., once for every rendering of the user's view on
the world.

Additionally, VRML requires continuous changes to be up-to-date during
the processing of discrete events, i.e., "continuous changes that are occurring
at the discrete event's timestamp shall behave as if they generate events at
that same timestamp" ([CBM97], paragraph 4.11.3.).

Example 1 Figure 1(a) depicts a simple event cascade. The TimeSensor's
isOver eventOut sends <true, touchTime> whenever the user moves
the pointing device over its geometry and <false, retractTime>
upon retraction.

These events are routed to a Script node—amongst other destinations

173-

FEUP - Faculdade de Engenharia da Universidade do Porto

in a fan-out configuration—which performs author-defined event pro-
cessing. In this example resulting in colour value being sent to a Ma-
terial node. A world author might employ such a scenario to provide
user feedback for the touch of a button.

Example 2 The TimeSensor in figure 1(b) produces continuous events con-
taining a number in the range [0,1] on its fraction-changed field with
the passage of time. These continuous events are passed to a Posi-
tionlnterpolator that animates the translation vector of a Transform
node. In this way, VRML provides support for linear key-framed an-
imation. A fan-in situation can arise for the Transform node, if both
Positionlnterpolators send events with identical timestamp.

2.4 Sequential Implementation

Algorithm 1 shows the pseudo-code algorithm of a typical VRML97 browser.
If no discrete events are scheduled, continuous events are sampled as quickly
as possible, adapting the sampling frequency to hardware capabilities. This
event evaluation is alternated with frame rendering of the new geometric
layout.

Scheduled discrete events force the evaluation of all continuous events at
that same time (see up-to-date requirement above). If any discrete events
have not yet been evaluated, no rendering takes place.

Algorithm 2 shows the evaluation of the event cascade for each initial
(sensor) event C» or D{ (mapped to E). The loop breaking rule prohibits
cyclic loops by limiting each eventOut to only one event per timestamp.
Otherwise, R' contains all edges of the routing graph pointing out of E.
R's fan-out destinations Irii are evaluated in turn. Possibly, event process-
ing at the destination Irii may result in the creation of further events E'^
and therefore recursive invocations of algorithm 2 until the complete event
cascade is evaluated.

Algorithm 2 represents only one possible way of ordering event process-
ing of conceptually simultaneously occuring events for sequential execution.
Beyond the requirement that events be evaluated in timestamp order, VRML
does not specify any ordering of event processing. I.e., the evaluation order
of branches in a fan-out configuration as well as for eventln processing at
fan-in nodes is implementation dependent.

3 Opportunities for Parallelism

As worlds become more complex, the main loop of algorithm 1 takes more
time, which can result in a reduced sampling frequency for continuous events,
and therefore jerky scene updates. Further, the system may become over-
saturated with discrete events if they are generated more frequently than

174-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Algorithm 1 Sequential VRML97 Pseudocode
lasttime •<— 0;
loop

now ■*— Browser.getWorldTimeQ;

if any discrete sensor eventOuts £; scheduled with lasttime < tEt <
now, e.g., asynchronous user input, or finished TimeSensor cycle then

tn 4- time of most imminent Sf,

D<-{Dj\tDj = tD}\

C <- sample of all continuous eventOuts at time to;

evaluate event cascade for each d G C; /*algorithm 2*/
evaluate event cascades for each Dj G D; /*algorithm 2*/
lasttime = £p;

else
C <— continuous events sampled from all active and enabled
TimeSensors at time now;

evaluate event cascades for each CiinC; /*algorithm 2*/
lasttime = now;
rendering of the new geometric world layout;

end if
end loop

Algorithm 2 Event Cascade Evaluation for a sensor Event E
if eventOut E has already 'fired' for time tß then

stop; loop breaking rule

else
R' 4- {(Out, Jiii) C R\Out = E)

process all Ini, potentially generating a set of new events E[j for each
In{;

evaluate event cascades for all E'^ produced by using this algorithm
recursively;

end if

175-

FEUP - Faculdade de Engenharia da Universidade do Porto

Figure 2: Parallel Evaluation of Single Event E. All events have the same
timestamp tß.

the system is able to evaluate their event cascades. In this section we ex-
amine opportunities for tackling these problems by parallelising the VRML
execution model.

3.1 Parallelism Within a Single Event Cascade

In algorithm 2, if a single initial sensor event E has a fan-out configuration,
all eventin fields Irii linked to it can be processed in parallel (see figure
2). Recursion may lead to an even higher degree of parallelism. This is
possible without affecting VRML97 semantics, as no evaluation order for
fan-out events 7n, is defined. As event notification is the sole communication
mechanism between nodes, there can be no undesirable interference between
two execution paths.

Due to fan-in configurations, two execution paths might reunite at one,
common node. To avoid unwanted side effects in updating the node's private
fields, it is paramount that event processing is performed sequentially at the
node. I.e, some form of synchronisation is necessary for incoming events—for
example a queue which buffers pending requests for processing.

Widely branching event cascades produced by single sensor events may
exhibit high degrees of parallelism. The grain size is only determined by the
complexity of event processing in the participating nodes.

3.2 Parallelism between Event Cascades

If several initial sensor events are scheduled with the same timestamp,
VRML treats them as if they are members of the same event cascade. Fan-
ins of events with the same timestamp are allowed and ordering is in the
implementation's responsibility. Multiple writes to a single eventOut field

-176-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Figure 3: Event Cascade with several Initial Events E{ all of which have the
same timestamp tg.

are inhibited to satisfy VRML's loop breaking rule.
All events Dj and Cj scheduled in the main loop of algorithm 1, can

therefore be evaluated in parallel3 (see figure 3), with the same restrictions
for fan-in as discussed in 3.1.

3.3 Routing Graph Partition

Parallelizing event cascades with different times is more intricate. The
VRML specification requires that events be evaluated in timestamp order.
Parallel processing of event cascades for different timestamps could result in
a node processing events out-of-order and thus violating the VRML specifi-
cation.

However, if we can identify disjoint partitions of the routing graph, then
parallelism can be exploited. The routing graph is defined as a structure
connecting eventin fields to eventOuts. We define a partition as all routes
that are reachable from any node, following all eventOuts at the destination
node.

For disjoint partitions, event cascades with different times can run in
parallel, as no interference can take place. Within a partition, such cas-
cades have to be serialised in order of timestamps. This ignores the issue of
a dynamically changing routing graph4, which would require the dynamic
examination of the routing graph.

This approach might minimally influence the perception of the world:
users may notice the effects of out-of-order changes to visible nodes. How-
ever, we can assume that such differences in timestamps would only be in the

3i.e., by kicking off several instances of algorithm 2 for each event
4Script nodes in VRML might be programmed to change the topology of the routing

graph dynamically

177-

FEUP - Faculdade de Engenharia da Universidade do Porto

Clients

Server

Processor
^Nodes

' UDP / TCP
communication

VRML event passing^

Figure 4: Parallel VRML Client-Server Model

range of a few milliseconds, and this is therefore unimportant for almost all
worlds. Causally related behaviour will always be presented in the correct
order as this is sequentialised through dependencies in the routing graph.

3.4 Further Parallelism

Beyond the above we identified further opportunities for parallelism are as
below:

Evaluation of Sensor Nodes can be done in parallel if their required sen-
sor information is available (e.g. current time, user location, etc.).
Sensor nodes may then register discrete events with a Scheduler.

Scheduler The whole of algorithm 1 may be replicated for each partition
of the routing graph. Again, synchronised time must be available at
each location.

4 Implementation

The following gives a quick overview of the System Of Dynamic Active
Objects (SODA), which is used as programming model and runtime system
for implementaiton of the VRML server. A more in-detail description of
SODA will soon be available as a technical report.

4.1 Active Objects Programming Model

SODA adopts a programming model of coexisting active and passive ob-
jects, similar to ProActive [CV98]. Active objects encapsulate a concurrent

-178-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

activity and have a queue to buffer method invocations for serial processing
by this activity. Neither explicit thread programming nor intra-object syn-
chronisation code is required. Active objects are globally addressable and
passed by reference. In contrast, passive objects can only exist privately to
an active object and consequently have pass-by-value semantics.

Programs consist of a collection of active and private objects, which,
if distributed over several processors, proceed in parallel. Unlike ProAc-
tive, active objects are fully location transparent and do not require explicit
mapping to a parallel platform.

Method calls are by definition non-blocking. The callee can proceed
without waiting for the caller to return. Upon termination of the method
the callee may hand back results in a future mechanism, similar to ProActive
[CV98]. In addition, SODA defines Collectors as an additional inter-object
synchronisation mechanism. These are capable of detecting termination of
a method call together with its complete cascade of subcalls and inform an
arbitrary active object about this condition.

4.2 SODA Runtime

The SODA runtime system is characterised by several key features:

Dynamic Load Balancing Through Active Object Migration. Trans-
parently to the programmer, the SODA runtime system is responsible
for spreading out active objects during runtime with the aim of dy-
namically maximising processor utilisation for the overall system. This
is important where active objects have relatively high fluctuations in
their resource requirements.

Active Object Multiplexing on Threads. Active objects may be mul-
tiplexed onto threads. This prevents thread flooding and encourages
programmers to use relatively many active objects without worrying
about negative performance impact.

True One-Way Method Calls. Many related systems (e.g. JavaParty
[PZ97] and ProActive) use RMI as transport protocol for method in-
vocations on active objects. This has disadvantages for modelling an
active objects model. This has the following disadvantages:

RMI, being designed as a client-server protocol does not provide an
asynchronous communication mechanism. Related systems based on
RMI overcome this by creating an additional thread at the caller to
wait for method call termination, which incurs performance penalties.
Additionally, RMI opens a TCP/IP port for every remote object allo-
cated. This is not optimal for a large number of active objects.

In contrast, SODA uses a socket-layer communication protocol to im-
plement one-way calls. At most one TCP/IP connection is established

179-

FEUP - Faculdade de Engenharia da Universidade do Porto

VRML
Nodes

behaviours and
environment
evaluation

one-way event
routing

i ' V v

active objects member
functions

asychronous
method
invocation

VRML
execution
model

active objects
programming
model

Figure 5: Mapping VRML onto Active Objects

between every pair of hosts. SODA also exploits "unexpected locality"
of active objects [PZ97]. I.e., no expensive loopback communication
takes place if caller and callee reside on the same JVM.

4.3 Mapping onto Active Objects

VRML nodes and SODA active objects share many commonalities. Follow-
ing the object-orientation paradigm, communication among VRML nodes
can only take place through a well-defined interface. In both systems, in-
coming messages trigger the asynchronous execution of member functions.

We applied a mapping between components of the two systems (see figure
5) as follows: VRML nodes can be directly mapped onto active objects.
Those nodes may then perform parallel event generation or processing, which
is the mainstay for parallel event cascade evaluation.

Asynchronous VRML event passing is mapped onto the asychronous
and one-way communication semantics of SODA. Figure 5 shows how all
elements of the VRML execution model find a valid equivalent in SODA.

Distributed Schedulers (see 3.4) can be implemented as active objects.
SODA's collector mechanism is used to inform the scheduler object about
termination of an event cascade.

Altogether, our experience from creating a parallel VRML prototype
showed that SODA offers a good match for supporting VRML nodes, be-
haviours and the routing mechanism.

4.4 Client-Server Communication

Client-server communication is based on a light-weigt datagram protocol
for performance reasons. Clients may communicate with any server node
to send the user's position and to receive information about objects within

180-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

their respective view volume (see figure4). Client-server communication can
be reduced by performing server-side culling or area of interest management
[SZ99].

4.5 Preliminary Performance Results

For preliminary performance testing we used a network of four Pentium
II 233 Mhzworkstations, running Linux 2.2.5 and Sun's JDK 1.2.2, as our
server. The machines were networked via fast ethernet connections. The
client was running Windows NT on a Pentium 11-300 without hardware
graphic acceleration, connected via a only 10Mbit Ethernet on the same
LAN. We used CosmoPlayer 2.1 as VRML browser.

As a simple experiment, we created a scene graph containing a primitive
geometric objects. The translation of each object was influenced through a
Script node driven by a separate TimeSensor. To get results for varying com-
plexity of event processing, the granularity of the Script node was changed
over a series of tests by cycling through an empty loop. The experiment was
performed for one and four TimeSensor-Script-Object triplets, once locally
(in the browser's JVM), then remotely (on the server). The first remote run
uses only one server node, while the second employs all four.

Script Granularity 0 104 105 106 107 108

local 1 TS -> 1 Scipt 40.3 39.3 37.8 27.8 7.69 1.29
remote 1 TS -> 1 Scipt 89.3 88.7 88.9 87.9 13.6 1.14

local 4 TS -> 4 Scipt 28.8 28.1 25.4 12.7 2.18 0.2
remote 4 TS ->• 4 Scipt 27.6 25.7 25.7 25.8 16.6 5.5

Those values are slightly influenced by fluctuations on the shared network
connecting client and server. However, it is interesting to notice that even
without parallelism the client-server approach gives much higher update
rates. This can be related to the cost of software rendering at the client, i.e.
the two machines share world evaluation and rendering.

For four triplets, the update rate is similar when scripts have low event
procesing costs. As those get higher however, the performance of remote
parallel execution becomes visible.

5 Conclusion and Further Work

This paper has presented a novel, scalable, client-server based approach
to implementing complex virtual worlds with many interacting users. The
clients that browse the world are protected from the costs required to sup-
port a large, complex world by the server, which carries the burden of pro-
gressing the state of the world, and determining the fraction of the world
that is visible to each client. The work of the client is restricted to receiving

181 -

FEUP - Faculdade de Engenharia da Universidade do Porto

updates to the part of the world that it can see, and rendering a view of this.
The server is able to support large, complex worlds due to its scalable, par-
allel design. The paper has shown how a parallel implementation of VRML
can be built without changing the semantics of the execution mechanism.
The results from the prototype show that real performance gains can be
achieved. Experience in building the prototype using SODA has shown the
power of the active object model for parallel, object-based software design.

Future work will include tuning the system, and analysing its ability
to scale up to huge, complex worlds, with many users, running on a larger
number of parallel nodes.

References

[CB97] Rikk Carey and Gavin Bell. The Annotated VRML 2.0 Reference
Manual Addison-Wesley Publishers, 1997.

[CBM97] Rikk Carey, Gavin Bell, and Chris Marrin. Iso/iec 14772-1: 1997
virtual reality modelling language (vrml97), 1997.

[CV98] Denis Caromel and Julien Vayssiere. Towards seamless comput-
ing and metacomputing in Java. In Geoffrey C. Fox, editor, Con-
currency: Practice and Experience, volume 10, pages 1043-1061.
Wiley & Sons, 1998.

[PZ97] Michael Philippsen and Matthias Zenger. Javaparty - transparent
remote objects in Java. In Geoffrey C. Fox, editor, Concurrency:
Practice and Experience, volume 9, pages 1225-1242. Wiley &
Sons, 1997.

[SZ99] Sandeep Singhal and Michael Zyda. Networked Virtual Environ-
ments. ACM Press, 1999.

-182-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Cellular Automata: Applications

Dietrich Stauffer

Institute for Theoretical Physics, Cologne University, D-50923 Köln, Euroland
staufferCthp.uni-koeln.de

Abstract. A review will be given on the simulation of large simple cel-
lular automata with up to one million times one million elements. Here
each site of a large lattice carries a binary variable the orientation of
which depends on its lattice neighbours orientation at the previous time
step. Single-bit processing allows for high speeds (except for probabilistic
rules) and saves memory. Geometric parallelization is easy since only a
small amount of message passing at predictable times is required. Appli-
cations will emphasize biology: Game of life, ageing, sex.

1 Introduction

Parallel computing for cellular automata and Ising-like systems has a 30 year
old history, long before real parallel machines became widespread. For each vari-
able then can be stored in a single bit, and by logical bit-by-bit operations
dealing with 32 variables simultaneously through one single 4-byte command.
Many aspects of vector and parallel computing, like the division of a lattice
into sublattices of checkerboard-type, were used in this way before they were
used on vector computers. Physicists call this method multi-spin coding, and
Prof. J.A.M.S Duarte is a Porto expert. Since my last review [1] large parallel
machines became widespread, and also different applications were found.

Cellular automata are discrete in space, time, and values. For us here we
assume that each site i of a large lattice carries a variable rii which is either
+1 or -1 (the spin language preferred by physicists), or 1 and 0 in the language
of computer science which is more appropriate for multi-spin coding. The value
n, at the next time step t + 1 is completely determined by that of its nearest
lattice neighbours at time step t. These are deterministic automata; do you call
a cigarette automat working if with probability p ~ 0.4 it delivers a pack of
cigarettes ?

The next section deals with multi-spin coding on a scalar machine, then we
deal with domain decomposition of large lattices on parallel computers, and
finally we summarize some applications with up to 1012 sites.

2 Multi-Spin Coding

Let us assume we want to study an infection process. Every site on a large lattice
is either sick (n = 1) or healthy (n =0). Sick sites infect their neigbours. Thus

- 183-

FEUP - Faculdade de Engenharia da Universidade do Porto

II

rii(t + 1) is sick at the next time step t + 1, if at time t at least one of its
neighbours was sick. On a one-dimensional chain these two neighbours of site i
are i - 1 and i + 1 which means that a logical OR gives the desired result:

nnew(i) = n(i-l) .or. n(i+l)

when in Fortran n and nnew are logical arrays. Now many bits are wasted to
store the one-bit variables nnew and n in one computer word. If we store 32 such
variables in one computer word, we rewrite the above statement as

nnew(i) = ior(n(i-l) , n(i+l))

where ior is a bit-string command performing the logical-or operation for each
pair of bits separately. Thus one command does 32 (or 64) operations in paral-
lel on a scalar computer. In the programming language C the same bit-by-bit
commands are part of the standard, using different symbols for the operations.

If of the chain we would store sites 1 to 32 in the first 4-byte integer n(l),
sites 33 to 64 in n(2), etc, then the above statement would not deal with the
nearest neighbours of site i. Therefore, if we use LL = L/32 words n(l), n(2), ...
n(LL) for L sites, we store site 1 in the first word, site 2 in the second, ..., site
LL in the last word, in the first bit position. Then sites LL + 1, LL + 2,..., 2LL
are stored in the second bit position of the same words n(l), n(2), ... n(LL), then
2LL +1 to 311 in the third bit position, until the last bit of the last word n(LL)
is filled with site L. Then the above statement really works for i = 2; for the
extreme words n(l) and n(LL) the left and right neighbours are n(LL) and n(l),
respectively, shifted circularly to the left or right by one bit. In d dimensions, the
integer array n needs a second index going from 1 to Ld_1 as usual. Complete
Fortran programs are given in [1].

In the analysis of simulated configurations it is very helpful to have a function
computing the number of bits which are set. Fortunately, the late Seymour Cray
was aware of that problem and gave us this function under the name popcnt.

These programs are also vectorized and speeds of the order of 109 sites could
be reached already a decade ago on one vector processor. The next section de-
scribes the parallelization.

3 Parallel Computers

While multi-spin coding allows parallel treatment of 32 variables, we can get
additional speed on parallel computers with many processors, distributed mem-
ory, and message passing, by using simultaneously all these processors on one
large lattice. (How to do different lattices on different processors by replication
presumably does not have to be explained to this conference.) Since I do not
have access to a multitude of such parallel machines, I just learned the machine-
dependent message passing routines on the machine for which I had the account,
and since 1996 this is a Cray-T3E with 64 bits per word. Message passing com-
mands start with shmem.

184-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

III

do 3 itime=l,max
info = barrier()
if(node.gt.O) call shmem_get(n(l,0),n(l,Lstrip),LL,node-l)
if(node.eq.O) call shmem_get(n(l,0),n(l,Lstrip),LL, np -1)
info = barrier()
do 6 j=l,Lstrip

; periodic boundaries left and right via circular shift
n(0,j)=ior(ishft(n(LL,j),-l),ishft(n(LL,j),63))

6 n(LLl,j)=ior(ishft(n(l,j),l),ishft(n(l,j),-63))

ncb=0
do 7 j=l,Lstrip
if(j.eq.2) then
info = barrier()
if(node.lt.np-1) call shmem_get(n(l,Lp),n(l,l),LL,node+l)
if(node.eq.np-1) call shmem_get(n(1,Lp),n(l,l),LL, 0)
info = barrierO
end if
do 7 i=l,LL
nl=n(i,j-l)
n2=n(i,j+l)

n3=n(i-l,j)
n4=n(i+l,j)
n5=n(i,j)
nl2=ior(nl,n2)
n(i,j)=ior(ior(iand(nl,iand(n2,n3)),iand(n5,

1 iand(n4,ior(nl2,n3)))),iand(ior(n5,n4),
2 ior(iand(nl2,n3),iand(nl,n2))))

7 if(n(i,j).ne.n5) nch=nch+popcnt(ieor(n(i,j),n5))
info = barrierO
if(node.eq.O) then
do 8 iadd=l,np-l

call shmem_get (idummy.nch, 1, iadd)
8 nch = nch + idummy

endif
info = barrierO
call shmem_get (nch,nch,1,0)
info = barrierO
if(node.eq.O) print *, itime,nch
if(nch.eq.O) goto 9

3 continue
9 continue

Here shmem get (target, source, length, node) gets from the processor
with number node the information starting there with the word source and

-185-

FEUP - Faculdade de Engenharia da Universidade do Porto

IV

extending over length words in total. It stored it in the memory of the cur-
rent processor, with the first memory location called target. For example, call
shmem get(n(l,0),n(l,Lstrip),LL,node-l) gets from processor node-1 to
the present node the LL words n(l,Lstrip) to n(LL,Lstrip) and stored them in
the words n(l,0) to n(LL), 0).

We divide a large Lx L square lattices into Np strips of length L and width
Lstrip = L/Np. Each strip is stored on one processor; in addition, each processor
stores the lowest lattice line of the strip on the upper processor, and the highest
lattice line of the strip on the lowest buffer. These two buffers are updated after
every iteration via the shmem get command. Thus message passing happens at
predictable times, and the amount of transferred information is much smaller
than the total amount of stored information provided LstriP 3> 1.

The sample program core simulated the Griffeath majority rule on the square
lattice: A spin is flipped if and only if more than half of its four neighbours point
into the opposite direction. Loop 7 mostly translates these words into logical
statements for the bit-by-bit operations. To see if a stable configuration is reached
which will remain unchanged forever we calculate the number nch of sites which
have flipped. If this number, summed over all processors, is zero, then we can
stop the iteration. This particular cellular automata rule [2] was selected since
the simulation indeed comes to a stop after a moderate number of iterations,
thus allowing the simulation of L = 106 with moderate computing time. (For
simplicity, the program uses sequential instead of simultaneous updating, info
= barrier () forces synchronization of all processors. There are more elegant
ways than loop 8 to sum over all processors.)

4 Applications

4.1 With Multi-Spin Coding

One of the most famous applications of cellular automata are Frisch-Hasslacher-
Pomeau lattice gases for hydrodynamics on a triangular lattice. However, in
recent years the emphasis in this area seems to have shifted to the lattice Boltz-
mann equation which goes beyond cellular automata and is thus not reviewed
here [3].

Immunology was simulated with cellular automata, sometimes using the
above methods for huge lattices; but no consensus is evident from the litera-
ture which automata rule is best; thus we refer to [4].

(In this immunological context, a vectorization technique was developped
which allows to write one Fortran program for general dimension, working e.g.
on the square lattice, the simple cubic lattice, and the four- or five-dimensional
hypercubic lattice, though not with one bit per spin. The number of neighbours
in d dimensions is 2d, and an inner loop over such a small number of neighbours
would be very inefficient. Thus the inner loop went through all lattice sites. In
the loop body, for every direction one line was added which was executed if
the dimensionality d was large enough. Such if-statements again normally are

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

V

deadly for efficient vectorization. However, by denoting d as a fixed constant
idim through parameter (idim=3), the if-conditions were evaluated at compile
time and the loop was efficiently vectorized.)

The Game of Life has fascinated many through its variety of configurations.
It uses the 8 nearest and next nearest neighbours of the center site. If the center
site is empty it becomes occupied at the next time step if and only if three
neighbours are occupied; if the center is occupied it remains so for the next time
step if and only if two or three of its eight neighbours are occupied. A multi-spin
coding program was published by Gibbs [5] though Franco Bagnoli (priv.comm.)
has a faster one. Fig.l shows how the final density of occupied sites depends on
the initial density [5]. Large lattices confirmed the theoretically expected power
laws here for both low and high densities.

3
Game of Life up to 160,000 * 160,000: concentrations in percent

© © © © O © OOA o °o
« 0

2.5
0

2 ©

1.5 0

1 .
o

0.5 -
o o

0-
0

(£ 1 1 1 1 1 1 1 1 ttw^OOOOOOO—

20 30 40 50 60
initial concentration

70 80 90 100

Fig. 1. Variation of equilibrium density in Game of Life with initial density if the sites
initially are occupied randomly. [5]

Much simpler are the Q2R cellular automata approximating the Ising model.
Each spin flips if and only if it has as many up as down neighbours. Thus, if
interpreted as an Ising magnet, the spin flips if and only if such a flip does not
change the energy. We have here a reversible microcanonical and non ergodic
algorithm which neverless numerically gives the correct spontaneous magneti-
zations in two and three dimensions. The dynamical behavior, however, is not
understood [6]. This algorithm is a special case of the Creutz demon method
recently reviewed by Aktekin [7]; we merely let the size of the energy reservoir

187-

FEUP - Faculdade de Engenharia da Universidade do Porto

VI

of the demons go to zero. Careri [8] pointed out a possible biological application
of Q2R.

4.2 Other Bit-Strings

In the above applications, all bits within one word could be treated efficiently
by multi-spin coding since they all played the same role and thus were treated
in parallel. This is no longer the case when the position of a bit has a special
meaning. In the Penna model of biological ageing [9], the bit position corresponds
to a "year" or other time unit in the life of the individual: A bit set at one year
means that from this year on until the death of the individual a dangerous
inherited disease affects the health; three or more such active diseases kill. Thus
the bit-string in this Penna model symbolizes the survival aspects of the genome;
the age of genetic death is stored in it from birth, but at present we know only
those inherited diseases which have become active. (See the movie Gattaca on
the question whether a future is desirable when we can interpret the human
genome such that we know all these genetic defects long before they become
active.)

Thus each individual, characterized by a string of 32 bits, lives until three set
bits kill it. Before, if gives birth provided it has reached the minimum reproduc-
tion age; for each child a random mutation sets one of the bits to one compared
with the bit-string of the parent. To avoid an exponential growth of the popu-
lation, a Verhulst factor like in the logistic equation limits the population from
above. Now we no longer can deal with the bit-string through multi-spin coding
in the above parallel sense, since a bit for year 2 plays a different role than a bit
for year 30. But the bit-handling techniques are useful for both methods.

Numerous simulations of this model, as reviewed recently [10], gave agree-
ment with the Gompertz law of a mortality function increasing exponentially
with age, or with the lifestyle of the Pacific Salmon who dies shortly after mar-
riage. Very recently [11] it was pointed out that in experiments with flies one may
have a genetically homogeneous population but still a Gompertz law whereas the
Penna model would in this case predict all genetic deaths at the same age; this
critique was combined with a more complicated model avoiding this disadvan-
tage.

For parallel computing it is not only easier but also better to simulate Np

separate populations on Np processors in parallel, than to distribute one popu-
lation among the different processors. In the latter case, after some time one of
the processors, which happened to have the fittest ancestors, will carry all the
individuals and the others none, if no load balancing [12] is made.

The above algorithm refers to asexual cloning; sexual reproduction combines
one female bit-string and one male bit-string to give the genome of the child.
Compared to cloning, sexual reproduction has the immediate advantage of avoid-
ing the dangers of a hereditary disease: If this disease is recessive, as are most
mutations, and if only one of the two parents has it, then the child's health is
not affected by it. In other words, sexual reproduction as opposed to cloning
allows for redundant information just like back-up diskettes. If an error gets into

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

VII

the hard disk (female genome), the diskette (male genome) still has the correct
information. Similarly, repeated proofreading [13] avoids more error than proof-
reading just once. One of the main successes of the sexual Penna model was
an explanation why females (as opposed to Pacific Salmon) survive menopause
and why menopause exists at all for mammals [10]. It explained why men live
shorter than women, opposite to the situation with birds [14]. The simulations
also warn of future disappointments with medical care [15].

Sexual Penna model; b=8 no selection (top), b=4 no selection (bottom), b=4 with selection (middle)

1e+06 i 1 1 1 1

100000

10000

i.!j' V v v v v y if Y "' v v v y i v y y if V vf v"«V -■ v y V"/ v ■* y yv ? ■< v' v'-! v v "^!/ v v •" v

5000 10000 15000 20000 25000

time

Fig. 2. Initial simulation (top), population with half the birth rate to simulate sexual
reproduction (bottom), and somewhat improved results if females select only healthy
partners (middle).

However, what about life-forms with two genomes but without sexual repro-
duction (also known as meiotic parthenogenesis). The above arguments make in
this case the transmission of genetic information as reliable as in the sexual case,
while the men do not get pregnant and just eat the steaks and drink the port
wine away from the mothers. Why do we men exist at all ? As protection against
parasites [16] ? It helps little if after thousand generations the greater genetic
variety allows better adjustment to an environmental catastrophe when during
the waiting time at each generation meiotic parthenogenesis wins by a factor of
two compared to sexual reproduction [10,17]. Figure 2 shows with the highest
population the meiotic parthenogenesis; then for sexual reproduction the birth
rate is reduced by a factor two to account for lazy men (lowest population), and
finally, for the middle curve, we assume that females select only the healthier

FEUP - Faculdade de Engenharia da Universidade do Porto

VIII

males (less mutations) as sexual partners. We see from the figure that female
selection may help, but not enough to overcome the loss of half the births.

Thus, perhaps men are an error of nature: "When God created Adam, She
was only trying out."

References

1. Stauffer, D.: Computer simulations of cellular automata. J.Phys. A 24, 909 (1991);
de Oliveira, P.M.C.: Computing Boolean Statistical Models, World Scientific, Singa-
pore 1991

2. Stauffer, D.: Simulation of Griffeath majority rule on large square lattice. Int. J.
Mod. Phys. C 8, 1141 (1997)

3. Boghosian, B. and Yeomans, J. : Proc. 7th Int. Conf. Discrete Simulation of Fluids,
Oxford, July 1998, Int. J. Mod. Phys. C 9, 1123-1605 (1998)

4. Lippert, K. and Behn, IL: Modelling the Immune System: Architecture and Dynam-
ics of Idiotypic Networks, page 287 in: Annual Reviews of Computational Physics,
Vol. V, World Scientific, Singapore 1997; Zorzenon dos Santos, R.M.: Immune Re-
sponses: Getting close to experimental results with cellular automata models, ibid.,
Vol. VI, page 159 (1998)

5. Gibbs, P. and Stauffer, D.: Search for Asymptotic Death in Game of Life. Int. J.
Mod. Phys. C 8, 601 (1997); Malarz, K. et al: Some new facts of Life. Int. J. Mod.
Phys. C 9, 449 (1998)

6. Stauffer, D.: Critical 2D and 3D dynamics for q2r cellular automata. Int. J. Mod.
Phys. C 8, 1263 (1997)

7. Aktekin, N.: page 1 in: Annual Reviews of Computational Physics, Vol. VII, World
Scientific, Singapore 2000.

8. Careri, G. and Stauffer, D.: Ising cellular automata for proton diffusion on protein
surfaces. Int. J. Mod. Phys. C 9, 675 (1998)

9. Penna, T.J.P.: J. Statist. Phys. 78, 1629 (1995)
10. Moss de Oliveira, S., de Oliveira, P.M.C, and Stauffer, D.: Evolution, Money, War

and Computers, Teubner, Stuttgart-Leipzig, 1999
11. Pletcher, S. and Neuhauser, O: Biological aging - Criteria for modelling and a new

mechanistic model. Int. J. Mod. Phys. C ll,No.3 (2000)
12. Meisgen, F.: Dynamic load balancing for simulations of biological aging. Int. J.

Mod. Phys. C 8, 575 (1997)
13. Morris, J.A.: Medical Hypotheses 49, 159 (1997)
14. Paevskii, V.A.: Demography of Birds (in Russian), Nauka, Moscow 1985
15. Niewczas, E., Cebrat S., and Stauffer, D.: The influence of the medical care on

the human life expectancy in 20 th century and the Penna ageing model. Theory in
Biosciences, in press (2000).

16. Hamilton, W.D., Axelrod, R., and Tanese, R.: Sexual reproduction as an adaption
to resist parasites. Proc. Natl. Acad. Sei. USA 87, 3566 (1990); Howard, R.S. and
Lively CM.: Parasitism, mutation accumulation and the maintenance of sex. Nature
367, 554 and 368, 358 (E) (1994); Sa Martins, J. S.: Simulated co-evolution in a
mutating ecology. Phys. Rev. E 61, R 2212 (2000)

17. Stauffer, D.: Why care about sex ? Some Monte Carlo justification. Physica A 273,
132 (1999)

- 190-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

The Role of Parallel Cellular Programming in
Computational Science

Domcnico Talia

ISI-CNR
c/o Deis, UNICAL

87036 Rende, CS,Italy
e-mail: taliaasi.deis.unical.it

Abstract. Cellular automata provide an abstract model of parallel com-
putation that can be effectively used for modeling and simulation of com-
plex phenomena and systems. The design and implementation of parallel
languages based on cellular automata provide useful tools for the devel-
opment of scalable algorithms and applications in computational science.
We discuss here the use of cellular automata programming models and
tools for parallel implementation of real-life problems in computational
science. Cellular parallel programming tools allow for the exploitation
on the inherent parallelism of cellular automata in the efficient imple-
mentation of natural solvers that simulate dynamical systems by a very
large number of simple agents (cells) that interact locally. As a practi-
cal example, the paper shows the design of parallel cellular programs by
a language called CARPET and discusses other languages for parallel
cellular programming.
Keywords: cellular automata, programming languages, parallel and dis-
tributed computing.

1 Introduction

Cellular automata (CA) offer a computational model that, because its simplicity
and generality, has been utilized in many and disparate scientific, areas such as
fluid dynamics, artificial life, image processing, parallel computing, biology, eco-
nomics and data encryption. The use of cellular automata has been widened by
their implementation on high-performance parallel architectures that allowed for
their use on solving very complex problems. Several languages and tools have
been developed for programming cellular automata on sequential and parallel
machines. They can support and improve the design and implementation of com-
plex applications and systems using the cellular automata paradigm. This paper
presents and discusses cellular automata programming languages and models for
parallel implementation of real-life problems in computational science.

A cellular automaton consists of a lattice of cells, each of which is connected
to a finite neighborhood of cells that arc nearby in the lattice [14]. Each cell in
the regular spatial lattice can take any of a finite number of discrete state values.
Time is discrete, as well, and at each time step all the cells in the lattice arc

-191-

FEUP - Faculdade de Engenharia da Universidade do Porto

updated by means of a local rule called transition function, which determines
the cell's next state based upon the states of its neighbors. That is, the state of
a cell at a given time depends only on its own state and the states of its nearby
neighbors at the previous time step. Different lattice topologies (e.g., triangular,
square, and hexagonal) and neighborhoods can be defined for an automaton.

Cellular automata provide a global framework for the implementation of par-
allel programs that represent natural solvers of dynamic complex phenomena and
systems based on the use of discrete time, discrete space and a discrete set of
state variable values. CA arc intrinsically parallel and they can be efficiently
mapped onto parallel computers , because the communication flow between pro-
cessors can be kept low. Inherent parallelism and restricted communication arc
two key points for the efficient execution of CA on parallel computers. Applica-
tions of CA arc very broad, ranging from the simulation of artificial life, physical,
biological and chemical phenomena to the modeling of engineering problems in
many fields such as road traffic, image processing, and science of materials. In the
past 20 years there has been a significant increase of research activities concern-
ing both theoretical aspects and practical implementations and use of cellular
automata as a model for complex dynamics [16] [12].

In the cellular programming approach, a cellular algorithm consists of the
transition function of cells that compose the CA lattice. The transition function
of each cell is executed in parallel, thus the global state of the the entire automa-
ton is updated at each iteration. For all the cells the same local rule is generally
used (homogeneous cellular automata), but it is also possible to define some
cells with different transition functions (inhomogcncov.s cellular automata).

In general, traditional languages such as C, Pascal, C++ and Fortran arc
used in sequential implementations of cellular automata simulations. When a
parallel implementation is provided, these languages arc typically used together
with parallel toolkits such as MPI and PVM. An alternative to this conservative
approach is to use CA languages that can express directly in their constructs
the definition of CA lattices and cellular algorithms. After the program writing,
a compiler translates these CA rules into a simulation program. This approach
has a programming advantage offering high-level CA operations and the same
CA description could possibly also be compiled onto different computers.

Our opinion is that it is necessary and very useful to develop high-level lan-
guages and tools specifically designed to express the semantics of the cellular
automata computational model. In particular, the design and implementation of
parallel languages based on the cellular automata model provide high-level pro-
gramming tools for the development of natural solvers in computational science,
that is scalable algorithms and applications based on a nature-inspired model
such as cellular automata. In the recent years several CA-bascd languages have
been developed and used for designing computational science applications. This
paper discusses the role these languages may play in the parallel scientific ap-
plications arena. Furthermore, we show as a case study of this approach, the
design of parallel cellular programs by the CARPET language and discuss other
languages for parallel cellular programming such as CDL, Parcel-1, CANL, and

-192-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Ccllang. Because of space limits wc cannot describe in detail all the languages,
therefore wc discuss their main fcattircs by discussing the paramount aspects of
the parallel cellular programming languages class.

The remainder of the paper is organized as follows. Section 2 introduces and
discusses the main features of parallel cellular languages. Section 3 gives a brief
description of the CARPET language and section 4 shows the use of CARPET
for implementing scientific applications according to the cellular programming
model; some figures arc presented to show performance scalability. Finally, sec-
tion 5 draws some conclusions.

2 Languages for Parallel Cellular Computing

The aim of the paper is to discuss how cellular programming languages can
support users in the implementation of computational science applications. This
class of applications require the use of high-performance computers to get results
in a reasonable amount of time. For this reason we restrict the discussion on
cellular languages that arc have been implemented on parallel computers.

For the implementation of CA on parallel computers two main approaches
can be used. One is to write programs that encode the CA rules in a general-
purpose parallel programming language such as HPF, HPC+-1-, Linda or CILK
or still using a high-level sequential language like C, Fortran or Java with one of
the low-level toolkits/libraries currently used to implement parallel applications
such as MPI, PVM, or OpcnMP. This approach docs not require a parallel
programmer to learn a new language syntax and programming techniques for
cellular programming. However, it is not simple to be used by programmers that
arc not experts in parallel programming and code consists of a large number
of instructions even if simple cellular models must be implemented. The other
possibility is to use a high-level language specifically designed for CA, in which
it is possible to directly express the features and the rules of CA, and then
use a compiler to translate the CA code into a program executable on parallel
computers. This second approach has the advantage that it offers a programming
paradigm that is very close to the CA abstract model and that the same CA
description could possibly also be compiled into into different code for various
parallel machines. Furthermore, in this approach parallelism is transparent from
the user, so the programmers can concentrate on the specification of the model
without worrying about architecture related issues. In summary, it leads to the
writing of software that docs express in a natural way the cellular paradigm, thus
programs arc more simple to read, change, and maintain. On the other hand,
the regularity of computation and locality of communication allow CA programs
to get good performance and scalabiltity on parallel architectures.

Several CA programming languages such as Ccllang [3], CARPET [10], CDL
[C], CANL [7], Parcel-1 [13], DEVS-C++ [18], and CEPROL [8], have been
designed for parallel cellular computing" in the past years. These languages sup-
port the definition of cellular algorithms and their execution on different classes
of parallel computers. They have several shared features such as the common

-193-

FEUP - Faculdade de Engenharia da Universidade do Porto

computational paradigm and some differences such as, for example, different
constructs to specify details of a cellular automaton or of mapping and output
visualization [17]. Many real-world applications in science and engineering, such
as lava-flow simulations, molecular gas simulation, landslide modeling, freeway
traffic flow, 3-D rendering, soil biorcmediation, biochemical solution modeling,
and forest fire simulation, have been implemented by using these CA languages.
Moreover, parallel CA languages can be used to implement a more general class
of fine grained applications such as finite elements methods, partial differential
equations and systolic algorithms.

Here wc discuss the main features of those languages. In particular, we outline
the following aspects that influence the way in which CA applications can be
developed on high performance architectures:

1. programming approach,
2. cellular lattice declaration,

3. cell state definition and operations,

4. neighborhood declaration and use,

5. parallelism exploitation,
6. cellular automata mapping, and
7. output visualization,

By discussing these concepts wc intend to illustrate how this class of languages
can be effectively used to implement high-performance applications in science
and engineering using the massively parallel cellular approach.

2.1 Programming Approach

When a programmer starts to design a parallel cellular program she/he must
define the structure of the lattice that represents the abstract model of a com-
putation in terms of cell-to-ccll interaction patterns. Then it must concentrate
on the unit of computation that is a single cell of the automaton. The computa-
tion that is to be performed must be specified as the evolution rule (transition
function) of the cells that compose the lattice. Thus, differently form other ap-
proaches, a user do not specify a global algorithm that contains the program
structure in an explicit form. The global algorithm consists of all the transition
functions of all cells that are executed in parallel for a certain number of itera-
tions (steps). It is worth to notice that in some CA languages it is possible to
define transistion functions that change in time and space to implement inhomo-
geneous CA computations. Thus, after defining the dimension (e.g., 1-D, 2-D,
3-D) and the size of the CA lattice, she/he needs to specify, by the conventional
and the CA statements, the transition function of the CA that will be executed
by all the cells. Then the global execution of the cellular program is performed as
a massively parallel computation in which implicit communication occurs only
among neighbor cells that access each other state.

-194-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

2.2 Cellular Lattice Declaration

As mentioned in the previous section, the lattice declaration defines the lattice
dimension and the lattice size. Most languages support two-dimensional rect-
angular lattices only (e.g., CANL and CDL). However, some of them, such as
CARPET and Ccllang, allow the definition of 1-D, 2-D, and 3-D lattices. Some
languages allow also the explicit definition of boundary conditions such as CANL
[7] that allows adiabatic boundary conditions where absent neighbor cells arc as-
sumed to have the same state as the center cell. Others implement reflecting
conditions that arc based on mirroring the lattice at its borders. Most languages
use standard boundary conditions such as fixed and toroidal conditions.

2.3 Cell State

The cell state contains the values of data on which the cellular program works.
Thus the global state of an automaton is defined by the collection of the state
values of all the cells. While low-level implementations of CA allow to define the
cell state as a small number of bits (typically 8 or 16 bits), cellular languages
such as CARPET, CANL, DEVS-C++ and CDL allows a user to define cell
states as a record of typed variables as follows:

cell = (direction :int ;
speed : float);

where two substates arc declared for the cell state. According to this approach,
the cell state can be composed of a set of sub-states that arc of integer, real,
char or boolean type and in some case (e.g., CARPET) arrays of those basic
types can also be used. Together with the constructs for cell state definition, CA
languages define statements for state addressing and updating that address the
sub-states by using their identifiers cell.direction.

2.4 Neighborhood

An important feature of CA languages that differentiate them from array-based
languages and standard data-parallel languages is that that they do not use
explicit array indexing. Thus, cells are addressed with a name or the name of
the cells belonging to the neighborhood. In fact, the neighborhood concept is
used in the CA setting to define interaction among cells in the lattice. In CA
languages the neighborhood defines the set of cells whose state can be used in the
evolution rule of the central cell. For example, if wc use a simple neighborhood
composed of four cells wc can declare it as follows

neigh cross = (up, down, left, right);

and address the neighbor cell states by the ids used in the above declaration
(e.g., down, speed, left .direction). The neighborhood abstraction is used to
define the communication pattern among cells. It means that at each tipc step,

-195-

FEUP - Faculdade de Engenharia da Universidade do Porto

a cell send to and receive from the neighbor cells the state values. In this way
implicit communication and synchronization arc realized in cellular computing.
The neighbor mechanism is a concept similar to the region construct that is used
in the ZPL language [2] where regions replace explicit array indexing making
the programming of vector- or matrix-based computations simpler and more
concise. Furthermore, this way of addressing the lattice elements (cells) does
not require compilc-timc sophisticated analysis and complex run-time checks to
detect communication patterns among elements.

2.5 Parallelism Exploitation

CA languages do not provide statements to express parallelism at the language
level. It turns out that a user does not need to specify what portion of code must
be executed in parallel. In fact, in parallel CA languages the unit of parallelism is
a single cell and parallelism, like communication and synchronization, is implicit.
This means that in principle the transaction function of every cell is executed
in parallel with the transaction functions of the other cells. In practice, when
coarse grained parallel machines arc used, the number of cells N is greater than
the number of available processors P, so each processor executes a block of N/P
cells that can be assigned to it using a domain decomposition approach.

2.6 CA Mapping

Like parallelism and communication, also data partitioning and proccss-to-proccssor
mapping is implicit in CA languages. The mapping of cells (or blocks of them)
onto the physical processors that compose a parallel machine is generally done
by the run-time system of each particular language and the user usually inter-
venes in selecting the number of processors or some other simple parameter.
Some systems that run on MIMD computers use load balancing techniques that
assign at run-time the execution of cell transition functions to processors that
arc unloaded or use greedy mapping techniques that avoid some processor to
become unloaded or free during the CA execution for a long period. Example of
these techniques can be found in [15], [G] and [1].

2.7 Output Visualization and Monitoring

A computational science application is not just an algorithm. Therefore it not
sufficient to have a programming paradigm for implementing a complete appli-
cation. It is also as much significant to dispose of environments and tools that
help a user in all the phases of the application development and execution. Most
of the CA languages we arc discussing here provide a development environment
that allows a user not only to edit and compile the CA programs. They allow
to monitor the program behavior during its execution on a parallel machine, by
visualizing the output as composed of the states of all cells. This is done by dis-
playing the numerical values or by associating colors to those values. Examples

-196-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

of these parallel environments arc CAMEL for CARPET, PECANS for CANL,
and DEVS for DEVS-C++. Some of these environments provide dynamical vi-
sualization of simulations together with monitoring and tuning facilities. Users
can interact with the CA environment to change values of cell states, simulation
parameters and output visualization features. These facilities arc very helpful
in the development of complex scientific applications and make possible to use
those CA environments as real problem solving environments (PSEs) [4].

Here we addressed the most important aspects that concern the CA software
development process from problem specification to execution and simulation tun-
ing. In the next sections we use the CARPET language as a case-study language
to describe in practice how cellular languages can support the development of
computational science applications.

3 CARPET: A high-level cellular language

CARPET implements the main CA features in a high-level programming lan-
guage to assists parallel cellular algorithms design without apparent parallelism
[10]. In particular, CARPET has been used for programming cellular algorithms
in the CAMEL (Cellular Automata cnvironMcnt for systEms ModcLing) parallel
environment [1]. CAMEL provide a software environment designed to support
the parallel execution of cellular algorithms, the visualization of the results, and
the monitoring of the program execution. CARPET and CAMEL have been used
for implementing high-performance simulations of lava flows, landslides, freeway
traffic, and soil biorcmediation [11].

The execution of cellular algorithms is implemented by the parallel execution
of the transition function of every cell according to the Single Program Multiple
Data (SPMD) model. In this way CAMEL exploits the computing power of a
highly parallel computer, hiding the architecture issues from a user. A CARPET
user can design cellular programs describing the actions of many simple active
elements (implemented by the cells) interacting locally. Then, the CAMEL sys-
tem allows a user to observe the global complex evolution that arises from all
the local interactions.

According to the SPMD programming approach, a user must define by CAR-
PET the transition function of a single cell of the system he wants to simulate,
then the language run-time system executes transition function in parallel to
update the state of each cell. The main features of CARPET arc the possibil-
ity to describe the state of a cell as a record of typed substatcs each one by
a user-defined type, and the simple definition of complex neighborhoods (e.g.,
hexagonal) that can be also time dependent in a n-dimensional discrete Carte-
sian space.

By CARPET, a variety of cellular algorithms can be designed in a simple
but very expressive way. The language utilizes the control structures, the types,
the operators and the expressions of the C language and it enhances the declara-
tion part allowing the declaration of the features of a cellular automaton. These

-197-

FEUP - Faculdade de Engenharia da Universidade do Porto

arc the dimensions of the automaton (e.g., the declaration dimension 3; de-
fines a three dimensional automaton), the radius (radius) of the neighborhood
and the pattern of the neighborhood (neighbor). For example, a very simple
neighborhood composed of four cells can be defined as follows:

neighbor Stencil[4] '([-1,0]Left, [1,0]Right, [0,l]Up, [0,-1]Down);

As mentioned before, the state (state) of a cell is defined as a set of typed
substates that can be shorts, integers, floats, char, and doubles or arrays of
these basic types. In the following example, the state consists of three substates.

state (float speedX, speedY, energy);

The energy substatc of the current cell can be referenced by the prede-
fined variable cell-energy. The neighbor declaration assigns a name to speci-
fied neighboring cells of the current cell and allows such to refer to the value of
the substates of these identified cells by their name (c.g.,Left_energy). Further-
more, the name of a vector whose length is the number of elements composing the
logic neighborhood it must be associated to the neighborhood (e.g., Stencil).
The name of the vector can be used as an alias in referring to the neighbor cells.
Through the vector, a substatc can be referred as Stencil [i] .energy where
0 < i■< 4.

To guarantee the semantics of cell updating in cellular automata the value of
one substatc of a cell can be modified only by the update operation, for example

update(cell_speedX, 13.4);

After the execution of an update statement, the value of a substatc argument
remains -unchanged in the current iteration. The new value takes effect at the
beginning of next iteration. Furthermore, a set of global parameters (parameter)
can be declared to define global characteristics of the system to be simulated
(e.g., the permeability of a soil). Finally, CARPET allows users to define cells
with different transition functions (inhomogencous CA) by means of thcGetX,
GetY, GetZ functions that return the value of the coordinate X, Y, and Z of the
cell in the automaton. By varying only a coordinate it is possible, for example,
to associate the same transition function to all cells belonging to a plane in a
three dimensional automaton.

The language docs not provide statements to configure the automata, to
visualize the cell values or to define data channels that can connect the cells
according to different topologies. The configuration of a cellular automaton is
defined by the graphical user interface (UI) of the CAMEL environment. The
UI allows, by menu pops, to define the size of the cellular automata, the number
of the processors onto which the automata must be executed, and to choose the
colors to be assigned to the cell substates to support the graphical visualization
of their values. The exclusion of constructs for configuration and data visualiza-
tion from the language it allows to execute the same CARPET program using
different configurations. Furthermore, it makes possible to change from time to
time the size of the automaton and/or the number of the processors onto which

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

the automaton must be executed. Finally, this approach allows selecting the
more suitable range of the colors for visualization of data.

4 Practical examples of cellular programming

In this section we describes two practical examples of cellular programming writ-
ten using the CARPET language. The first example is a typical CA application
that simulates excitable systems. The second program is the classical Jacobi re-
laxation that shows how it is possible to use GA languages not only for simulate
complex systems and artificial life models, but that they can be used to imple-
ment parallel programs in the area of fine grained applications such as finite
elements methods, partial differential equations and systolic algorithms that arc
traditionally developed using array or data-parallel languages.

4.1 The Greenberg-Hastings model

A classical model of excitable media was introduced 1978 by Grccnbcrg and
Hastings [5]. This model considers a two-dimensional square grid. The cells arc
in one of a resting (0), refractory (1), or excited (2) state. Neighbors arc the
eight nearest cells. A cell in the resting state with at least s excited neighbors
(in the program we use s = 1) becomes excited itself, runs through all excited
and resting states and returns finally to the resting state. A resting cell with less
than .s excited neighbors stays in the resting state.

Excitable media appear in several different situations. One example is nerve
or muscle tissue, which can be in a resting state or in an excited state followed by
a refractory (or recovering) state. This sequence appears for example in the heart
muscle, where a wave of excitation travels through the heart at each heartbeat.
Another example is a forest fire or an epidemic model where one looks at the
cells as infectious, immune, or susceptible.

Figure 1 shows the CARPET program that implements the two-dimensional
Greenberg-Hastings model. It appears concise and simple because the program-
ming level is very close to the model specification. If a Fortran+MPI or C+MPI
solution is adopted the source code is extremely longer with respect to this one
and, although it might be a little more efficient, it is very difficult to program,
read and debug.

4.2 The Jacobi relaxation

As a second example, wc describe the four-point Jacobi relaxation on anxn
lattice in which the value of each clement is to be replaced by the average value
of its four neighbor elements. The Jacobi relaxation is an iterative algorithm
that is used to solve differential equation systems. It can be used, for example,
to compute the heat transfer in a metallic plate on which boundaries there is a
given temperature. At each step of the relaxation the heat of each plate point
(cell) is updated by computing the average of its four nearest neighbor points.

-199-

FEUP - Faculdade de Engenharia da Universidade do Porto

#define resting 0
#define refractory 1
#define excited 2

cadef

{
dimension 2;
radius 1;
state (short value);
neighbor Moore[8] ([0,-l]North, [l,-i]NorthEast, [l,0]East,

[l,l]SouthEast, [0,1]South, [-l,l]SouthWest,
[-1,0]West, [-1,-1]Northwest);

>
int i, exc_neigh=0;

{
for (i=0; (i<8) kk (exc_neigh==0); i++)

if (Moore [i].value == excited) exc_neigh = 1;
switch (cell.value)

{
case excited : update(cell.value, recovering); break;
case recovering : update(cell.value, resting); break;
default : /* cell is in the resting state */

if (exc_neigh ==1)
update(cell.value, excited);

}
}

Fig. 1. The Greenberg-Hastings model written in CARPET.

Figure 2 shows a CARPET implementation. The initial if statement is used to
set the initial values of cells that arc taken to be 0.Ü except for the western edge
where boundary values arc 1.0.

The Jacobi program, although it is a simple algorithm, is another example
of how a CA language can be effectively used to implement scientific programs
that arc not properly in the original area of cellular automata. This simple case
illustrates the high-level features of the CA languages that can be also used for
implement applications that arc based on the manipulation of arrays such as
systolic algorithms and finite elements methods.

For the Jacobi algorithm wc present some performance benchmarks that have
been obtained by executing the CARPET program using different grid sizes and
processor numbers. Table 1 shows the execution times for 100 relaxation steps
for three different grid sizes (100x200, 200x200 and 200x400) on 1, 2, 4, 8 and
10 processors of a QSW CS-2 multicomputer. From the figure wc can see that
as the number of used processors increases, there is a corresponding decrease
of the execution time. This trend is more evident when larger grids arc used;
while smaller CA do not use efficiently the processors. This means that, because

-200-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

cadef

i
dimension 2;
radius 1;
state (float elem);
neighbor Neum[4]([0,-1]North,[-1,0]West,[0,1]South,[1,0]East);

}
int sum;

{
if (step == 1)

if (GetY == 1)
update (cell.elem, 1.0);

else
update (cell_elem, 0.0);

else
{

sum « North_elem+South_elem+East_elem+West_elem;
update (cell.elem, sum/4);

}
}

Fig. 2. The Jacobi iteration program written in CARPET.

of the algorithm simplicity, when we run an automaton with a small number
of cells we do not need to use several processing elements. On the contrary,
when the number of cells in the lattice is high, the algorithm benefits from the
use of a higher number of computing resources. This can be also deduced from
table 2 that shows the relative speed up results for the three different grids. In
particular, we can observe that when a 200x400 lattice of cells is used we obtain
a supcrlincar speed up in comparison to the sequential execution mainly because
of memory allocation and management problems that occur when all the 80,000
cells arc allocated on one single processing clement.

Table 1. Execution time (in sec.) of 100 iterations for the Jacobi algorithm

Grid Sizes 1 Proc I 2 Procs I 4 Procs 8 Procs 10 Procs

100x200 1.21 0.65 0.37 0.25
200x200 3.62 1.25 0.67 0.42 0.37
200x400 8.22 3.65 1.26 0.74 0.62

-201-

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 2. Relative speed up of the Jacobi algorithm

Grid Sizes || 1 Proc | 2 Procs | 4 Procs | 8 Procs | 10 Procs

100x200 1 1.86 3.27 4.84

200x200 1 2.89 5.40 8.62 9.78
200x400 1 2.25 6.52 11.10 13.25

5 Conclusions

The primary function of programming languages and tools has always been to
make the programmer more effective. Appropriate programming languages and
tools may drastically reduce the costs for building new applications as well as
for maintaining existing ones. It is well known that programming languages can
greatly increase programmer productivity by allowing the programmer to write
high-scalable, generic, readable and maintainable code. Also, new domain spe-
cific languages, such as CA languages, can be used to enhance different aspects
of software engineering. The development of these languages is itself a signifi-
cant software engineering task, requiring a considerable investment of time and
resources. Domain-specific languages have been used in various domains and the
outcomes have clearly illustrated the advantages of domain specific-languages
over general purpose languages in areas such as productivity, reliability, and
flexibility.

The main goal of the paper is answering the following question: How does
one program cellular automata on parallel computers? Wc think that it is very
important for an effective use of cellular automata for computational science
on parallel architectures to develop and use high-level programming languages
and tools that arc based on the cellular computation paradigm. These languages
may provide a powerful instrument for scientists and engineers that need to
implement real-life applications on parallel machines using a fine-grain approach.
This approach allows designers to concentrate on "how to model a problem"
rather than on architectural details as occurs when people use low-level languages
that have not been specifically designed to express fine-grained parallel cellular
computations.

In a sense, parallel cellular languages provide a high-level paradigm for hue-
grain computer modeling and simulation. While efforts in sequential computer
languages design focused on how to express sequential objects and operations,
here the focus is on finding out what parallel cellular objects and operations arc
the ones wc should want to define [9]. Parallel cellular programming is emerging
as a response to these needs.

After discussing the main issues in programming scientific applications by
means of parallel cellular languages, we discussed the CARPET language as an
example in this class of languages. By CARPET we described the iniplcmcntion
of two application examples that illustrate the main features of this approach.

-202-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Currently CARPET and the latest version of its run-time system named
CAMELot {CAMEL open technology) arc used for the implementation of mod-

els and simulation of complex phenomena and they arc available on parallel
architectures and cluster computing systems that use Sun Solaris, SGI IRIX,
Red Hat Linux and Tru64 UNIX 4.0F as operating systems.

Acknowledgements
This research has been partially funded by the CEC ESPRIT project n

24,907.

References

1. Cannataro, M., Di Gregorio, S., Rongo, R., Spataro W., Spezzano, G., Talia, D.:
A Parallel Cellular Automata Environment on Multicomputers for Computational
Science. Parallel Computing 21 (1995) 803-824.

2. Chamberlain, B.L., et al.: The Case for High-Level Parallel Programming in ZPL.
IEEE Computational Science and Engineering. 5 (1998) 76-86.

3. Eckart, J.D.: Cellang 2.0: Reference Manual, ACM Sigplan Notices. 27 (1992) 107-
112.

4. Gallopoulos, E., Houstis, E.N., Rice, J.R.: Workshop on Problem-Solving Envi-
ronments: Findings and Recommendations. ACM Computing Surveys 27 (1995)
277-279.

5. Greenberg, J. M., Hastings, S.P.: Spatial Patterns for Discrete Models of Diffusion
in Excitable Media. SIAM J. Appl. Math. 34 (1978) 515-523.

6. Hochberger, C, Hoffmann, R.: CDL - A Language for Cellular Processing. Proc.
2nd Int. Conf. on Massively Parallel Computing Systems. IEEE Computer Society
Press (1996).

7. Mango Furnari, M., Napolitano, R.: A Parallel Environment for Cellular Automata
Network Simulation. Proc. 2nd International Workshop on Massive Parallelism.
World Scientific, Singapore (1994) 353-364.

8. Seutter, F.: CEPROL: A Cellular Programming Language, Parallel Computing 2
(1985) 327-333.

9. Sipper, M.: The Emergence of Cellular Computing. IEEE Computer 32 (1999)
18-26.

10. Spezzano G., Talia, D.: A High-Level Cellular Programming Model for Massively
Parallel Processing. Proc. 2nd Int. Workshop on High-Level Programming Models
and Supportive Environments (HIPS97). IEEE Computer Society Press (1997) 55-
63.

11. Spezzano G., Talia, D.: Designing Parallel Models of Soil Contamination by the
CARPET Language. Future Generation Computer Systems 13 (1998) 291-302.

12. Talia, D., Sloot, P.: Cellular Automata: Promise and Prospects in Computational
Science. Future Generation Computer Systems 16 (1999) v-vii.

13. Vialle, S., Lallement, Y., Cornu, T.: Design and Implementation of a Parallel Cel-
lular Language for MIMD Architectures. Computer Languages 24 (1998) 125-153.

14. von Neumann, J.: Theory of Self Reproducing Automata. University of Illinois Press
(1966).

15. Weimar, J.R.: Simulation with Cellular Automata, Logos-Verlag, Berlin (1997).

-203-

FEUP - Faculdade de Engenharia da Universidade do Porto

16. Wolfram, S.: Computation Theory of Cellular Automata, Comm. Math. Phys. 96
(1984).

17. Worsch, T.: Programming Environments for Cellular Automata. Cellular Automata
for Research and Industry (ACRI 96). Springer-Verlag, London (1996) 3-12.

18. Zeigler, P.Z., et al.: The DEVS Environment for High-Performance Modeling and
Simulation. IEEE Computational Science & Engineering (1997) 61-71.

-204-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

A Novel Algorithm for the Numerical Simulation of
Collision-Free Plasma-Vlasov Hybrid Simulation

David Nunn1

1 Department of Electronics and Computer Science,
Southampton University,

Southampton, Hants, SO 17 1BJ, UK.

Abstract. Numerical simulation of collision-free plasma is of great importance in
the fields of space physics, solar and radio physics, and in confined plasmas used in
nuclear fusion. This work describes a novel completely general and highly efficient
algorithm for the numerical simulation of collision-free plasma. The algorithm is
termed Vlasov Hybrid Simulation (VHS) and uses simulation particles to construct
particle distribution function in the region of phase (r,v) space of interest. The
algorithm is extremely efficient and far superior to the classic particle in cell
method. A fully vectorised and parallelised VHS code has been developed, and has
been successfully applied to the problem of the generation of VLF triggered
emissions and VLF 'dawn chorus', due to the nonlinear interaction of cyclotron
resonant electrons with narrow band VLF band waves (-kHz) in the earth's
magnetosphere.

1 Introduction

The problem of the numerical simulation of plasma is one of great importance in the
realms of both science and engineering. The physics of the solar corona is essentially that
of a very hot collision free plasma. Plasma physics governs the behaviour of radio waves
in the whole of the earth's near space region, usually termed the Magnetosphere'. Closer
to home plasmas employed in nuclear fusion devices and industrial plasmas may well
have time and spatial scales which make them effectively collision-free, and
understanding their dynamics is of vital importance.

The equations governing any collision free (CF) plasma physics problem are those of
Maxwell and Liouville. Liouville's theorem states that the density of particles F(r,v) in 6
dimensional phase space r,v is conserved following the trajectories of particles in phase
space. Clearly plasma physics problems may be immensely complicated, particularly if

-205-

FEUP - Faculdade de Engenharia da Universidade do Porto

particle motion is non linear. Usually one must resort to numerical simulation to gain any
comprehension of what is happening.

Traditionally the methodology of choice for Collision Free plasma simulation was the
classic particle-in-cell (PIC) method. The required spatial domain r or simulation box is
covered by a suitable grid. A large number of simulation particles (SP's) are inserted into
the simulation box and their trajectories followed according to the usual equations of
motion. At each time step particle charge/currents are assigned or distributed to the
immediately adjacent spatial grid points, thus giving the charge/current field in the box.
Use of the discretised Maxwell's equations allows one to time advance or push' the
electric and magnetic field vectors in the r domain. PIC codes however suffer from
several disadvantages. They are noisy, make inefficient use of simulation particles, and
do not properly resolve distribution function in phase space. For problems involving
small amplitude waves where the perturbation in distribution function dF is relatively
small (dF«Fo) they are particularly noisy and inefficient.

2 The Vlasov Hybrid Simulation Method (VHS)

A novel and highly efficient simulation method has been devised termed Vlasov Hybrid
Simulation (VHS) [1]. The structure of the algorithm is as follows. A phase space (r,v)
simulation box is first selected, to cover the domain of interest in the problem at hand.
The maximum dimensionality of phase space is 6, but many realistic simulations have a
reduced number of spatial or velocity space dimensions. The phase box may be a
function of time as the simulation progresses. In the present case for example we are
interested in electrons that are cyclotron resonant with the wave field and this phase box
will cover the region of velocity space that is close to the resonance velocity. The box is
filled with a grid to provide adequate resolution of distribution function in phase space.
At the start of the simulation the phase box is evenly filled with particles at a density of
about 1-2 per elementary grid cell. By Liouville's theorem distribution function F is
conserved along phase trajectories. Each Simulation Particle (SP) is assigned a value of F
appropriate to the initial conditions for the problem at hand. As the simulation progresses
the SP trajectories in phase space are numerically integrated, in this case using a second
order modified Euler algorithm. Thus the value of distribution function (F) is known at
the points in phase space where the simulation particles happen to be located. Now at
each time step the values of F at SP points are interpolated to the fixed phase space grid.
This is achievable by a very simple procedure. The value of distribution function F1 at
each Simulation Particle number 1 is distributed additively to adjacent grid points using
the familiar area weighting coefficients 0Ci as employed in classical PIC codes. The
weighting coefficients a, themselves are also distributed additively to adjacent grid
points. For a specific grid point ijk we then have

-206-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

F» =
iF'a, 2>

where the sum is over all simulation particles located in the 2" elementary hypercubes
surrounding the grid point in question, where a phase space of dimensionality n has been
assumed. This interpolation procedure lies at the heart of the VHS method and confers its
many advantages. Once distribution function Fp is defined on a regular velocity space
grid it is a simple matter to compute plasma current and charge fields in 3D cartesian
space, by appropriate integration (summation) over the velocity space grid. Following
this one may push the EM fields forwards in time using a discretised representation of
Maxwell's equations.

2.1 Particle control

Fortunately from Liouville's theorem itself there is no tendency for SP's to bunch and
leave grid points \mcovered'. Where this does occur a value for Fyk may be secured by
interpolation from neighbouring grid points. At any time extra SP's may be inserted into
(or removed from) the phase fluid-they only act as markers providing information about
the value of distribution at a particular point. Unlike all other techniques the density of
SP's is not a critical quantity. It only needs to remain at a value greater than ~1 per
elementary phase space volume. For some problems, and this is particularly true in the
present case, there will be a flux of phase fluid out of or into the simulation phase space
box along its boundaries. Particles leaving the phase box are discarded as they convey
information no longer required. Where phase fluid enters the box it is necessary to insert
new SP's into the phase fluid at that point. This has to be done with some care in order to
attain an acceptable density of simulation particles in the incoming phase fluid. It is the
interpolation procedure that makes it legitimate and possible to do this. This is a very
powerful feature of VHS. The population of simulation particles is dynamic and
constantly changing.

2.2 Advantages of VHS

VHS has been found to be highly efficient and to have very low noise levels when
compared to PIC codes. Very efficient use is made of the simulation particles, as they
carry information as to the value of F (or rather dF). Unlike other Vlasov simulation
techniques that have been developed the algorithm is very stable and robust. For example
the standard method of Cheng and Knorr [2] aims to solve numerically the Vlasov
equations in phase or configuration space. This requires the determination of the gradient
of distribution function in phase space. This presents severe practical problems. In many
plasma simulation problems particle distribution function acquires quite legitimately fine
structure in phase space, often termed Tilamentation'. For example this may arise in wave

-207-

FEUP - Faculdade de Engenharia da Universidade do Porto

particle interaction problems in plasma when particles become phase trapped in a narrow
band wave. Such filamentation makes the Cheng and Knorr algorithm numerically
unstable against filamentation in velocity space. Attempts to resolve this problem involve
techniques such as numerical smoothing, which corrupts the underlying physics being
simulated. Another feature of VHS is that for certain problems,one may limit the region
of phase space where F is resolved to a time varying simulation box.This is indeed the
case in the present problem. The ability to accommodate a flux of phase fluid across the
boundary of the phase box is unique to VHS and allows the particle population to be
dynamic and to change constantly. In this way the particle population is confined to a set
that is locally optimal in time. For example in the present problem particles are constantly
drifting into and out of resonance with the wave. A PIC code would end up following
large numbers of non resonant particles, but a VHS code will constantly discard non
resonant particles and continually introduce new resonant particles. The benefits in
computational time this confers cannot be over estimated.

Another virtue of the VHS method is that distribution function is properly resolved in
phase space and is available as a diagnostic output. Distribution function is only available
from a PIC code by numerically inspecting the density of (weighted) simulation particles
in velocity space. This is actually rarely done with PIC codes, and if it were one would
quickly realise that the density of SP's was grossly inadequate to define F, let alone dF. It
is a fact that PIC codes, particularly in applications with high dimensionality, often have
inadequate numbers of simulation particles. The noise level is then extremely high, and
the authors are relying on integration over time and over velocity space (in the evaluation
of J (r) and p(r)) to reduce the noise to manageable levels.

3 The application area.

The VHS algorithm has been fruitfully applied here to a classic problem in space plasma
physics. This is the generation mechanism of triggered emissions and chorus in the VLF
band (3-30kHz) in the earth's magnetosphere. Triggered emissions are narrow band
signals with sweeping frequency. Typically the frequency may rise or fall by several kHz
in a time -1-2 sees. More complex spectral forms are often observed, such as downward
hooks, upwards hooks, quasi constant tones and emissions whose frequency oscillates.
Emissions are generated as a result of nonlinear cyclotron resonant interaction between
the the EM wave and energetic radiation belt electrons of ~keV energy. Emissions
achieve quite strong amplitudes of B-2-10pT, which represents a wave strong enough to
nonlinearly 'trap'cyclotron resonant electrons. It is generally agreed that chorus and VLF
emission arise in 'ducts' where the wave vector is closely parallel to the ambient magnetic
field direction. A key aspect of the nonlinear wave particle interaction is the dominant
role of the magnetic field inhomogeneity, which controls particle trapping dynamics and
confines the interaction region to the equatorial zone. Consequently we have developed a

-208-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

VHS/VLF code with 1 spatial dimension and 3 velocity dimensions to simulate this
nonlinear self consistent interaction in the equatorial zone of the earth's magnetosphere.
The region of generation is typically between 3 and 10 earth radii in altitude and some
1000s of kms in extent, spread along equatorial magnetic field lines. This problem is
extremely well suited to the VHS method-indeed this simulation has not been
successfully achieved with any other type of simulation method, and PIC codes have
shown themselves to be quite incapable of simulating this phenomenon. The phase box
encloses the cyclotron resonance velocity Vres

Vres = (co-n)/k

where a> is wave frequency, Q. is electron gyrofrequency and k is wave number. Note that
resonance velocity is in the opposite direction to wave phase and group velocities. The
resonance velocity will vary in both space and time, through changing frequency of the
emission, and significantly through inhomogeneity of the ambient magnetic field, which
has a parabolic dependence on distance z from the equator. Thus particles are constantly
entering the phase box, which is the region of resonance and thus of direct physical
interest. It is thus guaranteed that all SP's are close to resonance.

4 The VHS/VLF code.

The code has been developed in Fortran77 and has been run on a wide variety of
platforms, namely Origin2000, DEC Alpha cluster, Convex Exemplar, Cray YMP etc.
The most numerically intensive procedures are the particle push routines, and the process
of interpolating distribution function from particles to the fixed grid. The particle push
routines fully vectorize, but the interpolation procedure does not due to its logical
complexity. The whole code has been parallelised using MPI, which has been easily
achieved by means of the following technique. The ID spatial domain is divided into M
adjacent blocks, where M is the number of available processors. Each processor
implements the particle push and interpolation procedures in its part of the spatial grid.
At each step, those particles which physically move from one spatial domain to the next
must be passed with their appertaining data between adjacent processors at the interface.
The field push equations and certain global operations such as FFT/IFFT filtering of the
EM wave fields are low work load operations and are performed by the master processor.
All processors must pass current field data to the master at each timestep, where field
push and field filtering are performed. The master then returns the new global EM wave
fields to the 'slaves' who then perform the particle push and distribution function
interpolation for the next timestep.

-209-

FEUP - Faculdade de Engenharia da Universidade do Porto

The simulation takes place within a finite frequency band located about a centre
frequency which itself may be a function of time. The simulation bandwidth is ~ 70Hz
which requires a spatial grid -1600 in order to resolve all Fourier components of the
wave spectrum. The velocity space grid must be dense enough to resolve the structure of
the distribution function in the region about the resonance velocity. The dominant
structure is the so called resonant particle trap' and it was found that having 50 grid
points in the Vz axis parallel to the Bo direction and 20 points in gyrophase gave
adequate resolution. The total number of phase space grid points and thus the number of
simulation particles is thus typically in the range 0.5-5 million. A short run may take
only a few hours on an Origin2000. However run time scales as bandwidth cubed, so
high bandwidth runs may take as long as a week.

5. The observational data

Radio emissions in the VLF (kHz) band, the so called VLF emissions, may occur
spontaneously or be obviously triggered by some other signal. The first observations of
triggered VLF emissions were obtained on the earth's surface on US Navy vessels. Morse
code signals at 14kHz from the high power VLF transmitter NAA at Cutler, Maine were
observed to trigger' long enduring radio emissions (~1 second) with a sweeping
frequency ~2kHz/sec. [3]. In pioneering research it was realised by Helliwell [3] that
these emissions must arise in the earth's magnetosphere and be due to non linear electron
cyclotron resonance with radiation belt electrons with energies ~keV. Since that time
triggered VLF emissions have been routinely observed on the ground, particularly at
Halley Bay,Antarctica [4] and in Northern Scandinavia [5]. In the 1970's Stanford
University established a horizontal VLF antenna in Antarctica at Siple station on the
South Polar plateau. [6]. An extensive program of VLF transmissions were made to probe
the magnetosphere and investigate the phenomenon of triggered emissions. One of the
main objectives of the research program described here has been to develop the theory
and numerical simulation tools to fully understand the many extraordinary phenomena
observed in the Siple data base.

Since triggered emissions are generated in space, it is not surprising that this phenomenon
has also been observed on board scientific satellites. Unfortunately the VLF radio waves
are confined to field aligned ducts caused by localised enhancements of plasma density.
These ducts are ~100km in extent and it is only infrequently that a satellite will pass
through a duct. Consequently satellite observations can be rather disappointing. However
at large distances from the earth ,~10 earth radii, VLF signals are not ducted and satellites
there record a variety of VLF chorus and triggered emissions. A recent paper by Nunn et
al (1997) [7] presents VLF emission observations from the Geotail satellite and uses the
VHS simulation code to produce almost exact replicas of emissions observed, using all
the field and particle observations from on board the satellite. These results confirmed
totally the plasma theory underlying this phenomenon.

-210-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

6. Numerical modelling of Siple triggered emissions

Frequency/time plot of VLF emission

Figl.

The VHS/VLF code has been used to successfully simulate the triggering of a rising
frequency emission triggered by a CW 70ms pulse at 3663Hz from the Siple transmitter.
Figure 1 above displays a frequency-time contour plot of the output wavefield sequence
as recorded at the end of the simulation box. The sweep rate of 1 kHz/s is in excellent
agreement with observations on the ground and on board satellites.

The emission itself is produced by a quasi static non linear self consistent and self
maintaining structure termed a VLF soliton or generating region. This soliton is stable in
nature, both in reality and in the simulation code. The profile of the riser soliton is shown

-211

FEUP - Faculdade de Engenharia da Vniversidade do Porto

in figure 1. The code has completely elucidated the dynamical structure of the VLF
soliton, and identified two distinct types, one associated with a riser and one with a faller.

The code is also able to reproduce fallers with a suitable choice of initial parameters.
Both downward and upward hooks may be produced by the code and these are
interpretable in terms of transitions between the two soliton types. The sweeping
frequency is due to the out of phase component of resonant particle current that sets up
spatial gradients of wave number in the wave field and is able to sustain these. The top
panel of figure 2 shows d/dz(Ji/|R|), where Ji is the out of phase component of resonant
particle current and R the complex field. This quantity is the 'driver' that sets up the
appropriate wave number gradients.

Plot of d/dz(Ji/|R|) in Hz/s

-3000 -2000 -1000 0 1000

Plot of amplitude profile |R| in pT

2000

-3000 -2000 -1000 0
z kms

1000 2000

Fig 2.

Figure 3 shows the magnitude of the exit field received at the downstream end of the
simulation box. Received amplitude rises rapidly to reach the saturation level, and
remains there for a self sustaining emission.

-212-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing
Plot of exit amplitude in pT

1 1.5
Time (sees)

Fig 3

Frequency/time plot of VLF emission x10

-0.5

-1.5

-2.5

0.2 0.4 0.6 0.8 1
Time sees

1.2 1.4

Fig 4

Figure 4 shows the simulation of a falling tone, which was obtained by increasing the
ambient linear growth rate to 120dB/s, which has the effect of driving the wave profile
upstream and turns the generation region into the structure of the faller type. Again the
sweep rate of -1 kHz/s is in excellent agreement with observations. For this case fig 5
shows a time snapshot of the wave profile |R| and also of the wave number shift driver
d/dz(Ji/|R|). It is seen that the profile now extends further upstream.

-213-

FEUP - Faculdade de Engenharia da Universidade do Porto

1000

500

-500

Plot of d/dz(Ji/|R|) in Hz/s

-3000 -2000 -1000 0 1000

Plot of amplitude profile |R| in pT

2000

5 z 1 1 1 _^ i ^.^ i yv

l- / ^-^x/X/x A / \
^4 r / VV\ ■

/ \
y 3 / i <U / \ /
H? / \ f 1 \ /
Q. ^v /^/\ / \ / 1- 1 /"\ X\ / \ / \/" <

' • > ' ■ 1 1

-3000 -2000 -1000 0
z kms

1000 2000

Fig 5

7 Conclusions

The VHS method for numerical simulation of collision free plasma is low noise, highly
efficient, very stable and provides excellent diagnostics. In this application the method
has been successfully used to simulate triggered radio emissions in the VLF band in the
earth's near space region. This is a complex and difficult problem which has never been
solved using PIC codes. The VHS method far outperforms particle in cell codes in all
applications where resolution of the distribution function in velocity space is required.
The method is completely general and may be safely applied to ANY collision free
plasma simulation problem. Problems with a high dimensionality will be expensive if
tackled with a Vlasov VHS code. However use of a properly constituted Vlasov code
guarantees accuracy and meaningful results. It is all too easy to run PIC codes with far
too few particles, and to obtain results which although often plausible are in fact heavily
corrupted by simulation noise.

References

1. Nunn,D.: A Novel Technique for the Numerical Simulation of Hot Collision Free
Plasma-Vlasov Hybrid Simulation. J. of Computational Physics, vol 108(1) (1993)
180-196.

2. Cheng,C.Z., Knorr,G.: The Integration of the Vlasov Equation in Configuration
Space. J. Geophysical Research, (1976), vol 95 15073 et seq.

3. Helliwell,R.A.: Whistlers and Related Ionospheric Phenomena, Stanford University

-214-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Press, Stanford, California,USA,(1965).

4. Smith A.J. and Nunn,D.: A Numerical Simulation of VLF Risers, Fallers and
Hooks observed in Antarctica, J. Geophysical Research,103,(1998) 6771-6784.

5. Nunn,D.,Manninen,J., Turunen,T.,Trakhtengerts,V., and Erokhin,N.: On the
Nonlinear Triggering of VLF Emissions by Power Line Harmonic Radiation,
Annales Geophsicae, 17,(1999),79-94.

6. Helliwell,RA., Controlled Stimulation of VLF Emissions from Siple Station,
Antarctica, Radio Science,18,(1983),801-814.

7. Nunn,D.,Omura,Y.,Matsumoto,H.,Nagano,L, and Yagitani,S.: The Numerical
Simulation of VLF Chorus and Discrete Emissions Observed on the Geotail Satellite
Using a Vlasov Code, J. Geophysical Research,102,A12,(1997),27083-27097.

-215-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Parallelization of a Density Functional Program
for Monte-Carlo Simulation of Large Molecules

J. M. Pacheco1 and Jose Luis Martins2

1 Departamento de Ffsica da Universidade, 3000 Coimbra, Portugal,
pacheco<Shydra.ci.uc.pt,

WWW home page: http://aloof.fis.uc.pt/
2 Departamento de Ffsica, Institute Superior Tecnico

Av. Rovisco Pais, 1049-001 Lisboa, PORTUGAL
and

INESC Rua Alves Redol, 9, 1000-029 Lisboa, Portugal
jlmffiplana.inesc.pt,

WWW home page: http://bohr.inesc.pt/" jlm

Abstract. A first-principles program designed to compute, among other
quantum-mechanical observables, the total energy of a given molecule,
is efficiently parallelized using MPI as the underlying communication
layer. The resulting program fully distributes CPU and memory among
the available processes, making it possible to perform large-scale Monte-
Carlo Simulated Annealing computations of very large molecules, ex-
ceeding the limits usually attainable by similar programs.

1 Introduction

At present, an enormous effort is being dedicated to the study and fabrication of
nano-structures and new materials, which calls for a framework to compute, from
first-principles, and predict, whenever possible, properties associated with these
types of systems. Among such frameworks, Density Functional Theory (DFT)
constitutes one of the most promising. Indeed, the success of DFT to compute
the ground-state of molecular and solid-state systems has been recognized in
1998 with the award of the Nobel Prize of Chemistry to Walter Kohn and John
Pople. DFT provides a computational framework with which the properties of
molecules and solids can, in certain cases, be predicted within chemical accu-
racy (= 1 Kcal/mol). Therefore, it is natural to try to use at profit the most
recent computational paradigms in order to break new frontiers in these areas
of research and development.
In this work we report the successful parallelization of an ab-initio DFT pro-
gram, which makes use of a Gaussian basis-set. This, as will become clear in the
following section, is just one of the possible ways one may write down a DFT-
code. It has, however, the advantage of allowing the computation of neutral and
charged molecules at an equal footing, of making it possible to write the code
in a modularized fashion (leading to an almost ideal load-balance), as well as it

■217-

FEUP - Faculdade de Engenharia da Universidade do Porto

is taylor-made to further exploit the recent developments of the so-called order-
N techniques. As a result, the program enables us to carry out the structural
optimization of large molecules via a Monte-Carlo Simulated Annealing strategy.

Typically, the implementation of a molecular DFT-code using Gaussian, lo-
calized, basis-states, scales as N%t, or N*t, depending on implementation, where
Nat is the number of atoms of the molecule. Such a scaling constitutes one of the
major bottlenecks for the application of these programs to large (> 50 atoms)
molecules, without resorting to dedicated supercomputers. The fact that the
present implementation is written in a modular fashion makes it simple and ef-
ficient to distribute the load among the available pool of processes. All tasks
so-distributed are performed locally in each process, and All data required to
perform such tasks is also made available locally. Furthermore, the distribution of
memory among the available processes is also done evenly, in a non-overlapping
manner. In this way we optimize the performance of the code both for efficiency
in CPU time as well as in memory requirements, which allows us to extend the
range of applicability of this technique.
This paper is organized as follows: In Section II a brief summary of the un-
derlying theoretical methods and models, as applied to molecules, is presented,
in order to set the framework and illustrate the problems to overcome. In Sec-
tion III the numerical implementation and strategy of parallelization is discussed,
whereas in Section IV the results of applying the present program to the struc-
tural optimization of large molecules using Simulated Annealing are presented
and compared to other available results. Finally, the main conclusions and future
prospects are left to Section V.

2 Molecular Simulations with DFT

In the usual Born-Oppenheimer Approximation (BOA) the configuration of a
molecule is defined by the positions Ri of all the Nat atoms of the molecule and
by their respective atomic number (nuclear charge). The energy of the electronic
ground state of the molecule is a function EGS{RI, ■ ■ ■, R-Nat) of those nuclear
positions. One of the objectives of quantum chemistry is to be able to calcu-
late relevant parts of that function, as the determination of the full function is
exceedingly difficult for all except the simplest molecules. In practice one may
try to find the equilibrium configuration of the molecule, given by the minimum
of Eos, or one may try to do a statistical sampling of the surface at a given
temperature T. That statistical sampling can be done by Molecular Dynamics
(MD) or by Monte-Carlo (MC) methods. By combining the statistical sam-
pling at a given T with a simulation process in which one begins at a high T
and, after equilibrating the molecule, starts reducing the T in small steps, always
equilibrating the molecule before changing T, one realizes an efficient algorithm
for the global minimization of EQS, the so-called Simulated Annealing Method
(SAM).

The calculation of EQS for a single configuration is a difficult task, as it
requires the solution of an interacting many-electron quantum problem. In Kohn-

■218-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Sham DFT this is accomplished by minimizing a functional of the independent
electron orbitals i>i{r),

EGS(Ri, • • •,RNat) = minEKS{Ri,...,RNat; V>i, • • -,^el) (1)

where Nei is the number of electrons of the molecule, and the minimization is
done under the constraint that the orbitals remain orthonormal,

/
j,i(r)rl>j(r)<Pr = 8ij. (2)

The Euler-Lagrange equation associated with the minimization of the Kohn-
Sham functional is similar to a one particle Schrodinger equation

+ 2

-7T- vVi(r) +veS(r;ip1,...,tpn)tpi(r) = uipi{r), (3)
Am

except for the non-linear dependence of the effective potential ves on the or-
bitals. As our objective here is to discuss the numerical implementation of our
algorithms, we will not discuss the explicit form of veg and the many approxi-
mations devised for its practical calculation, and just assume one can calculate
veff given the electron wavefunctions tpi(r). The reader can find the details on
how to calculate veff in excellent reviews, e. g., refs.[l,2] and references therein.

If one expands the orbitals in a finite basis-set,

M

3

then our problem is reduced to the minimization of a function of the coefficients,

EGS(RI ;■■■, RN0,) » min EKS(Ri,..., RNat; cn,..., cNelM) (5)

and the Euler-Lagrange equation becomes a matrix equation of the form

^2Cij[Hkj - eiSkj] = 0 (6)
3

where the eigenvalues are obtained, as usual, by solving the secular equation

det\Hij-ESij\=0. (7)

The choice of the basis-set is not unique[3]. One of the most popular basis-sets
uses Gaussian basis-functions

<Pi(r) = tyexpf-a^r - Rtf)^^ _ R.) (8)

where the angular funtions Z™ are chosen to be real solid harmonics, and TV, are
normalization factors. These functions are centered in a nucleus R{ and are an

-219-

FEUP - Faculdade de Engenharia da Universidade do Porto

example of localized basis-sets. This is an important aspect of the method, since
this implies that the matrix-elements Hij result, each of them, from the contribu-
tion of a large summation of three-dimensional integrals involving basis-functions
centered at different points in space. This multicenter topology involved in the
computation of H^ ultimately determines the scaling of the program as a func-
tion of Nat. Finally, one should note that, for the computation of Hij one needs
to know ueff which in turn requires knowledge of ipi(r). As usual the solution is
obtained via a self-consistent iterative scheme, as illustrated in fig.l .

Due to the computational costs of calculating EQS from first principles, for
a long time the statistical sampling of EQS has been restricted to empirical or
simplified representations of that function. In a seminal paper, Car and Par-
rinello[4] (CP) proposed a method that was so efficient that one could for the
first time perform first-principles molecular dynamics simulations. Their key idea
was to use molecular dynamics, not only to sample the atomic positions but also
to minimize in practice the Kohn-Sham functional. Furthermore they used an
efficient manipulation of the wave-functions in a plane-wave basis-set to speed
up their calculations. Although nothing in the CP method is specific to a given
type of basis-set, the truth is that the overwhelming number of CP simulations
use a plane-wave basis-set, to the point that most people would automatically
assume that a CP simulation would use a plane wave basis-set.

Although one can use plane-waves to calculate molecular properties with a
super-cell method, most quantum chemists prefer the use of gaussian basis-sets.
What we present here is an efficient parallel implementation of a method where
the statistical sampling of the atomic positions is done with MC and the Kohn-
Sham functional is directly minimized in a gaussian basis-set.

3 Numerical implementation

3.1 Construction of the matrix

Each matrix-element Hij has many terms, which are usually classified by the
number of different centers involved in its computation. The time and memory
consuming terms are those associated with three center integrals used for the
calculation of the effective potential veg. For the sake of simplicity we will assume
that the effective potential is described also as a linear combination of functions
9k(r),

L

Veff(r, {ipi}) = J2 fk{{cij}) 9k(r), (9)
k=l

where the coeficients fk have a dependence on the wavefunction coefficients,
and gk are atom centered gaussian functions. Actually, in the program only the
exchange and correlation term of the effective potential is expanded this way,
but the strategy of parallelization for all other contributions is exactly the same,
and so we will not describe in detail the other terms.

-220-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

START

educated guess for p(r) ir-
compute potential

▼
END

eigenvalues & eigenfunctions
of

Kohn-Sham equations

*
(YES! t NO I

compute new p(r)

*

Comoarewith Dir) on entry anv change?

Fig. 1. self-consistent iterative scheme for solving the Kohn-Sham equations. One starts
from an educated guess for the initial density which, in DFT, can be written in terms
of the eigenfunctions of the Kohn-Sham equations as p(r) = ^\ |t/>i(r)|2. After several
iterations one arrives at a density which does not change any more upon iteration.

■221 -

FEUP - Faculdade de Engenharia da Universidade do Porto

The contribution of the effective potential to the hamiltonian Hij is

Vij = [Ur)ves(r,{^i})4>j(r)d3r = £/*({««}) I<t>i{r)9k{r)<pj{r)d3r
J fc=i J

L

= E^(^»^- (10)
fc=i

where the integral Aikj = f 4>i(r)gk(r)<pj(r)d3r involves three gaussian func-
tions, and can .be calculated analytically. Furthermore all dependence on wave-
function coefficients is now in the coefficients fk of the potential, and the integrals
Aikj are all the same in the self-consistent iterations. This means that all the
iterative procedure illustrated in fig. 1 amounts now to recombine repeatedly the
same integrals, but with different coefficients at different iterations throughout
the self-consistent procedure.

We can now appreciate the two computational bottlenecks of a gaussian
program. As the indexes i,j and k can reach to several hundred the size of the
three-index array Aikj requires a huge amount of memory. Although analytical,
the calculation of each of the Aikj is non-trivial and requires a reasonable number
of floating point operations. The summation in eq. 10 has to be repeated for each
of the self-consistent iterations.

So far, no parallelization has been attempted. We now use at profit the
modular structure of the program in order to distribute tasks among the available
processes in an even and non-overlapping way. In keeping with this discussion,
we recast each matrix-element Vij in the form

N, proc

Vj = ^ Vij[X) (11)

where the indexed Vij [A] will be evenly distributed among the Npvoc processes
executing the program, that is, it will be null except in one of the processes.
Similarly, the three-index array Aikj is distributed as

JVproc

Aikj = Y^ Aikj\X} (12)

in such a way that ^4^j[A] is null if Vij [A] is null. Of course, the null elements
are not stored so the large array is distributed among all the processes, which
for a distributed memory machine means that Aikj is distributed among all the
processes. As

L

Vijl\} = Y,fk({cij})Aikj{\} (13)

there is no need to exchange the values of Aikj among processes, but only those
of fk before summation, and Vij [A] after the summation. So the calculation of

. 222 •

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Aikj is distributed among the processes, the storage is also distributed, and A,kj
never appears in the communications.

Finally, and due to the iterative nature of the self-consistent method, the
code decides - a priori - which process will be responsible for the computation
of a given contribution to Vjj[A]. This allocation is kept unchanged throughout
an entire self-consistent procedure.

3.2 Eigenvalue problem

For Nat atoms and, assuming that we take a basis-set of M gaussian functions
per atom, our eigenvalue problem, eqs. 6 and 7, will involve a matrix of dimension
(Nat x M). Typical numbers for an atomic cluster made out of 20 sodium atoms
would be Nat = 20 and M = 7. This is a pretty small dimension for a matrix to
be diagonalized, so the CPU effort is not associated with the eigenvalue problem
but, mostly, with the construction of the matrix-elements Hij. We have not
yet parallelized this part of the code. Its paralellization, poses no conceptual
difficulty, since this problem is taylor made to be dealt with by existing parallel
packages, such as SCALAPACK. As this part of the code is the most CPU time
consuming among the non-paralelized parts of the code, it is our next target for
parallelization.

3.3 Monte-Carlo iterations

Once UGS(ÄI,.. .,jRjvnt) *s obtained for a given molecular configuration, the
Monte-Carlo Simulated Annealing algorithm "decides" upon the next move. As
stated before, this procedure will be repeated many thousands of times before an
annealed struture is obtained, hopefully corresponding to the global minimum
of EGs-
When moving from one MC iteration to the next, the Simulated Annealing
algorithms typically change the coordinates of one single atom Ra —> Ra + SR.
As the basis set is localized, each of the indices in A^k is associated with a given
atom. If none of the indices is associated with the atom Ra, than Aijk does not
change, and therefore is not recalculated. In this way, only a fraction of the order
of l/iVat of the total number of integrals Aijk needs to be recalculated, leading
to a substantial saving in computer time, in particular for the larger systems !
Furthermore, the "educated guess" illustrated in fig. 1, used to start the self-
consistent cycle is taken, for MC iteration n + 1, as the self-consistent density
obtained from iteration n. In this way, in all but the start-up MC iteration, the
number of iterations required to attain self-consistency becomes small. It is this
coupling between the Monte-Carlo and DFT parts of the code that allow us to
have a highly efficient code which enables us to run simulations in which the
self-consistent energy of a large cluster needs to be computed many thounsands
of times (see below).

-223-

FEUP - Faculdade de Engenharia da Universidade do Porto

4 Results and discussion

The program has been written in FORTRAN 77 and we use MPI as the underly-
ing communication layer, although a PVM translation would pose no conceptual
problems. Details of the DFT part of the program in its non-parallel version have
been described previously ref[6]. The MC method and the SAM algorithm are
well-described in many excellent textbooks[7].

The Hardware architecture in which all results presented here have been ob-
tained is assembled as a farm of 22 DEC 500/500 workstations. The nodes are
connected via a fast-ethernet switch, in such a way that all nodes reside in the
same virtual (and private) fast-ethernet network. In what concerns Software, the
22 workstations are running Digital Unix version 4.0-d, the DEC Fortran com-
piler together with DXML-libraries, and the communication layer is provided by
the free MPICH[8] distribution, version 1.1. Nevertheless, we would like to point
out that the same program has been tested successfully on a PC, a dual-Pentium
11-300, running Linux-SMP, g77-Fortran and LAM-MPI[9] version 6.2b.

We started to test the code by choosing a non-trivial molecule for which
results exist, obtained with other programs and using algorithms different from
the SAM. Therefore, we considered an atomic cluster made out of eight sodium
atoms - Na%. Previous DFT calculations indicate that a D^d structure - left
panel of fig. 3 - corresponds to the global minimum of .EGS[6].

Making use of our program, we have reproduced this result without difficulties.
Indeed, we performed several SAM runs starting from different choices for the
initial structure, and the minimum value obtained for EQS corresponded, indeed,
to the D2d structure. One should note that one SAM run for Nag involves the
determination of Eos up to 2,2 104 times. Typically, we have used 1000 MC-
iterations at a given fixed-temperature T in a single SAM run. This number,
which is reasonable for the smaller clusters, becomes too small for the larger,
whenever one wants to carefully sample the phase-space associated with the
{Ri,..., RNat} coordinates.

As shown in the right panel of fig. 2, Nag was our second choice. This is a nine
atom sodium cluster to which one electron has been removed. As is well known[5]
this cluster, together with Na8, constitute so-called magic clusters, in the sense
that they display an abnormally large stability as compared to their neighbours
in size[10]. When compared with quantum-chemistry results, the DFT structures
are different, both for Na$ and Nag. This is not surprising, since the underlying
theoretical methods and the minimization strategies utilized are also different, at
the same time that the hyper-surface corresponding to Ecs{{Ri}) is verv shallow
in the neighbourhood of the minima, irrespective of the method. Nevertheless,
recent experimental evidence seem to support the DFT results[10].

In order to test the performance of the parallelization, we chose Nag and
carried out two different kinds of benchmarks. First we executed the program
performing 1 iteration - the start-up iteration - for Nag and measured the CPU
time TCPU as a function of the number of processes iVpRoc- For the basis-set
used, the number of computed Aikj elements is, in this case 3321. As can be
seen from eq. 13, the ratio of computation to communications is proportional to

■224-

VECPAR '2000 - 4 th International Meeting on Vector and Parallel Processing

Fig. 2. global minimum of EGS for the two magic sodium clusters Nas and JVajJ".
For the determination of such global minima a SAM algorithm has been employed,
requiring many thousands of first-principles computations of EGS to be carried out.

the number of fit functions L. By choosing a small molecule where L is small
we are showing an unfavorable case, where the parallelization gains are small,
so we can discuss the limits of our method. In fig. 3 we plot, with a solid line,
the inverse of the CPU time as a function of iVpRoc •

Our second benchmark calculation involves the computation of 100 MC-
iterations. For direct comparison within the same scale, we multiplied the inverse
of TCPU by the number of iterations. The resulting curve is drawn with a dashed
line in fig. 3.

Several features can be inferred from a direct comparison of the 2 curves. First
of all, there is an ideal number ./VPROC into which the run should be distributed.
Indeed, fig. 3 shows that efficiency may actually drop as iVpRoc is increased. For
this particular system, iVpRoc = 8 is the ideal number. This "node-saturation"
which takes place here for TVaJ is related to the fact that the time per iteration is
small enough for one to be able to observe the overhead in communications due
to the large number of nodes in which the run is distributed. When the number
of atoms increases, this overhead becomes comparatively smaller and ceases to
produce such a visible impact on the overall benchmarks. From fig. 3 one can
also observe that, for small -/VPR.oc , the largest gain of efficiency is obtained for
the 1-iteration curve. This is so because that is where the parallelization plays a
big role. Indeed, as stated in section 3, the number of floating point operations
which are actually performed in the subsequent MC-iterations is considerably
reduced, compared to those carried out during the start-up iteration. As a result,
the relative gain of efficiency as iVpRoc increases becomes smaller in this case.
However, since both CPU and memory are distributed, it may prove convenient
to distribute a given run, even if the gain is not overwhelming.

■225.

FEUP - Faculdade de Engenharia da Universidade do Porto

u

0,45

0,36

0,27

ü

Z
0,09

0,00

_1—,—j—,—! ,—!—,—j—,—!—,—,—,—! ,—!—, f

•■». NaQ
+

9

/ -•— start-up iteration
-•- -100 iterations

i i i i i i . i i i
0 2 4 6 8 10 12 14 16 18 20 22

number of processes

Fig. 3. Dependence of inverse CPU time (multiplied by the number of MC-iterations)
as a function of the number of processes (in our case, also dedicated processors) for two
benchmark calculations (see main text for details). A direct comparison of the curves
illustrates what has been parallelized in the code and where the parallelization plays
its major role.

226-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

The solid curve of fig. 3 is well fitted by the function 0,25 - 0,17/7Vproc up to
-Nproc = 8 which reveals that a good level of parallelization has been obtained.
This is particularly true if we consider that the sequential code has 14200 lines,
and is very complex, combining many different numerical algorithms.

Finally, we would like to remark that, at present, memory requirements seem
to put the strongest restrictions on the use of the code. This is so because of
the peculiar behaviour of MPICH which creates, for each process, a "clone-
listener" of each original process, that requires the same amount of memory as
the original processes. This is unfortunate since it imposes, for big molecules, to
set up a very large amount of swap space on the disk in order to enable MPI to
operate successfully. In our opinion, this is a clear limitation. We are, at present,
working on alternative ways to overcome such problems.

In fig. 4 we show our most recent results in the search for global minima
of sodium clusters. The structures displayed in fig. 4 have now 21 (left panel)
and 41 (right panel) sodium atoms. A total of 17955 matrix-elements is required
to compute each iteration of the self-consistent procedure for Na^i whereas for
Na^j the corresponding number is 68265. The structures shown in fig. 4 illustrate
the possibilities of the code, which are, at present limited by swap limitations
exclusively. Of course, the CPU time for these simulations is much bigger than
for the smaller clusters discussed previously. In this sense, the structure shown
for Nali cannot be considered unambiguosly converged, in the sense that more
SAM runs need to be executed. On the other hand, we believe the structure
depicted for Na^ to be fully converged. Since no direct experimental data for
these structures exists, only indirect evidence can support or rule out such struc-
tural optimizations. The available experimental data[10] indirectly supports this
structure since, from the experimental location of the main peaks of the photo-
absorption spectrum of such a cluster one may infer the principal-axes ratio of
the cluster, in agreement with the prediction of fig. 4.

5 Conclusions and future applications

In summary, we have suceeded in parallelizing a DFT code which efficiently
computes the total energy of a large molecule. We have managed to parallelize the
most time and memory consuming parts of the program, except, as mentioned
in section 3.2, the diagonalization block, which remains to be done. This is
good enough for a small farm of workstations, but not for a massive parallel
computer. We should point out that it is almost trivial to parallelize the Monte-
Carlo algorithm. In fact as a SAM is repeated starting from different initial
configurations, one just has to run several jobs simultaneously, each in its group
of processors. However, this will not have the advantages of distributing the
large matrix A^. As storage is critical for larger molecules, parallelizing the
DFT part of the code may be advantageous even when the gains in CPU time
do not look promising.
The code is best suited for use in combination with MC-type of simulations,
since we have shown that, under such circumstances, not only the results of a

-227-

FEUP - Faculdade de Engenharia da Universidade do Porto

Fig. 4. Global minima for two large singly ionized sodium clusters with 21 atoms (left
panel) and 41 atoms (right panel). Whereas the structure of Na^ can be considered
as "converged", the same cannot be unambiguously stated for the structure shown for
iVaJ[. For this largest cluster, the structure displayed shows our best result so-far,
although further SAM runs need to be carried out.

given iteration provide an excellent starting point for the following iteration,
but also the amount of computation necessary to compute the total energy at
a given iteration has been worked out, to a large extent, in the previuous it-
eration. Preliminary results illustrate the feasibility of running first-principles,
large-scale SAM simulations of big molecules, without resorting to dedicated
supercomputers. Work along these lines is under way.

Acknowledgements
JMP and JLM acknowledge financial support from the Ministry of Science

and Technology under contracts PRAXIS / C / FIS / 10019 / 1998 and PRAXIS
/ 2 / 2.1 / FIS / 26 / 94, respectively.

References

1. R.M. Dreizler, E.K.TJ. Gross Density Functional Theory (Springer-Verlag, Berlin
1990) ;

2. G. D. Mahan, K. R. Subbaswamy, Local Density Theory of the Polarizability
(Plenum Press, 1990) ;

3. F. Alasia et al, J. Phys. B27 (1994) L643 ;
4. R. Car, M. Parrinello, Phys. Rev. Lett. 55 (1985) 2471 ;
5. J. M. Pacheco, Walter P. Ekardt, Annalen der Physik (Leipzig), 1 (1992) 254 ;
6. J. L. Martins, R. Car, J. Buttet, J. Chem. Phys. 78 (1983) 5646; J. L. Martins,

J. Buttet, R. Car Phys. Rev. B31 (1985) 1804;

■225

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

7. W. M. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes
2nd edition, (Cambridge University Press, 1990) ; H. Gould, J. Tobochnik, An in-
troduction to computer simulation methods, 2nd edition, (Addison-Wesley, 1996) ;

8. W. Gropp, E. Lusk, N. Doss, A. Skjellum, Parallel Computing, 2 (1996) 789 ;
W. Gropp, E. Lusk, User's Guide for mpich, a Portable Implementation of MPI,
(Mathematics and Computer Science Division, Argonne National Laboratory, 1996)
(http://www-unix.mcs.anl.gov/mpi/mpich/)

9. LAM Project, Laboratory for Scientific Computing, University of Notre Dame,
U.S.A. (lam@mpi.nd.edu, http://www.mpi.nd.edu/lam)

10. Walter P. Ekardt (Editor), Metal Clusters, Wiley Series in Theoretical Chemistry,
(John Wiley & Sons, 1990) ;

-229-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

An Efficient Parallel Algorithm for the
Numerical Solution of Schrödinger Equation.

Jesus Vigo-Aguiar1, Luis M. Quintales2 and S. Natesan3

1 Dept. of Mathematical Sciences, University of Wisconsin-Milwaukee.
PO Box 413. Milwaukee. WI, 53201, USA.

jvigoQgugu.usal.es.
2 Dept. of Informatica, University of Salamanca.

E-37008 Salamanca, Spain.
lamqSgugu.usal.es.

3 Dept. of Mathematics, Bharathidasan University,
Tiruchirappalli 620 024, Tamilnadu, INDIA.

matnatSbdu.ernet.in

Abstract. In this paper we show how to construct parallel explicit mul-
tistep algorithms for an accurate and efficient numerical integration of
the radial Schrödinger equation. The proposed methods are adapted to
Bessel functions, that is to say, they integrate exactly any linear combi-
nation of Bessel and Newman functions and ordinary polynomials. They
are the first of the like methods that can achieve any order. The coeffi-
cients of the method are computed in each step. We show how the parallel
implementation of the method is the key of an efficient computation.

Corresponding author: J. Vigo-Aguiar

1 Introduction.

The behavior of a spinless quantum particle of mass m in a potential v(X),
A" = (x1.x2.x3) is governed by the three-dimensional Schrödinger equation

^-Ay(X) + (v(X)-e)y(X) = 0 (1)

where A is the Laplace operator, h is the reduced Planck's constant and e is
the particle energy. The solution y(X) can be expanded on the complete set of
spherical functions }/.,„

viX) = \Y1Yty,{x)Yl,m(9,p) (2)
/=o »77=-;

where x.p.Q are the spherical coordinates of the point x. Introducing this ex-
pansion in the equation and operating, we find that yi(x) satisfies

y'l'(x) = (U(x)-P(x))yl(x), (3)

■231 -

FEUP - Faculdade de Engenharia da Universidade do Porto

where

k
2=2-^e P{x) = k*-1M+}1 (4)

h2 xl

and U(x) is a given potential. The solution of the equation must vanish at
the origin, i.e. one boundary condition is j//(0) = 0, and the other boundary
condition, which depends on the physical model, is imposed at large x.

Equation (3) is usually know as radial Schrödinger equation. And the problem
of integrating (1) has been transformed to the integration of a infinite set of
second order differential equations. Then it is obvious that we need methods
with small CPU times. The use of parallel procedures and adequate multistep
methods allow fast and accurate integration.

In the computation of the eigenvalues or the phase shifts of the radial Schrödinger
equation, usually the potential U{x) tends to zero much faster than the centrifu-
gal potential k2 - P(x) = I {I + l)/x2 and then the solution of (3) may be taken
as

y(x) = cteikxji(kx) + cts^kxrii {kx) (5)

where ji(x) and nj(a-) are respectively the Spherical Bessel and Neumann func-
tions. It is our intention to develop a method that integrates exactly any linear
combination of this functions and ordinary polynomials. This property is known
as Bessel fitting or adaptation to Bessel functions. The theory and a procedure
to construct adapted multistep methods to trigonometric and exponential func-
tions is nowadays solved and can be found in [8]. Theory and procedure for
adaptation to other types of dynamic behavior is still an open question.

The difficulty of construction of methods adapted to Bessel functions is evi-
denced by the fact that there exist only a few satisfactory papers on the subject
(see for example, Raptis and Cash [3] and Simos and Raptis [5]) The methods
of Raptis and Cash produce accurate solutions in the phase shift problem that
they proposed in spite of being second and fourth order methods. However in
their methods the coefficients depend on the point where we are calculating the
solution and so they must be recalculated at every step, with high computational
cost. This is the point where parallel implementation is fundamental. It is our
goal to formulate higher order Bessel fitting methods with the possibility that
the coefficients can be computed at the beginning of the program in parallel,
thus allowing a significant reduction in the computational cost.

2 Bessel and Neumann fitting methods.

To construct our procedure let us consider the differential equation

y"+P(x)y = f(x,y) (6)

Our first observation is that the sequence yn = cte.\k n hji(nh)+cteok n hni(nh)
is the solution of the difference equation

yn+i +di{x„+i,Xr,-i,h)y„ + di{x„+1.xn, h)y„-\ =0
i/o = 0 (7)
2/i = cte\k hji(h) + cteok hni(h)

-232-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

where

d[(a.b,h)

kaji(ka) kbji(kb)
kani(ka) kbni{kb)

k{a - h)ji(a - h) k{a - 2h)j,(a - 2h)
k(a - h)ni(a - h) k(a - 2/i)n/(a - 2h)

(8)

(9)

and || || denotes the determinant.
Then the problem

y" + P(x)y = 0

is integrated exactly with the proposed difference equation.
The construction of the discretization scheme is completed with the treat-

ment of the right-hand side f{x,y) in (6). In the theory of classical multistep
methods, f(x,y) is approximated by a interpolator}- polynomial in the previous
steps. The same proceeding is done here. The expression of the Bessel fitted
method applied to (6) is:

k

j/n+i + di(x„+i,x„-i,h)y„ + di(xn+i,xn,h)yn-i = h2 ^a,-f{x.n+\-i,yn+i-i)
i=0

(10)
We impose that the method integrates exactly the interpolation polynomial

of f(x, y) requiring the method to be exact when we integrate the equations

y"{x) + P{x)y = P{x)xm + m(m - l)xr
(11)

for 77! = 0,1, ••■,k. With this condition we obtain the nonsingular system of
linear equations for a,-:

Aa = Q (12)

where A is

1

Xn + l
2q(x„+i) + xl+1 2q(xn) + x,-

\k(k - l)xk„l\q(x„+i) + xk
n+1 k{k - l)x*-2q{xn) + 4 • • • *(* - l)q{xn-k)xk

n_Tk + xk
n_k j

1

2q(xn-k) + xn-k

„*'-2 , ^A-

and

Q =

/ h2P(xn+1)a0\
h2P{xn+i)aj

\h2P(x1l+l)aJ

Q =

\lkj

where q(x) = p(Xy

qi = x'n+1 +di{xn+l.xn-1.,h)x'n + di(xn+i:xn. /i)^,.-,.

(13)

(14)

(15)

233-

FEUP - Faculdade de Engenharia da Universidade do Porto

The solution of this system of equations can be done for 0 < k < 10 with the
help of a symbolic manipulator. The resulting scheme will be named PSBF (Par-
allel Spherical Bessel Fitted method) in the following. Note that the coefficients
Q are recalculated once in each step. That is a characteristic of all the methods
that integrate exactly linear differential equations without constant coefficients.

Our method is an implicit method, in the same way we could have deduced
an explicit method. However when we apply our method to equation (3) we can
obtain an explicit procedure:

j/n+i = rr, r{di{xn+i.xn-i,h)yn + d,{xn+i,xn,h)yu-i

* (16)
■/l2^Q,T(ln+l-i)!/n+l-

!=1

Given the good properties of stability of the implicit methods we have con-,
sidered unnecessary to use an explicit method.

3 Parallel Implementation and Properties.

We will give a brief explanation of the convergence of the method (detailed proofs
will appear in a different paper).

Theorem The multistep method PSBF of k + 1 steps is consistent of order
k + 1. Its local truncation error can be expressed as

Cp(y, h)(x) = hk+3ak+1P(D)y(x) + 0(hk+4) (17)

where P(D)y(x) is certain combination of y(x) and its derivatives. The method
integrates without local truncation error the problems (3) whose solution belongs
to the space generated by the linear combinations of

1, x, x2, ■■-,xkp, xji(x),xni(x) (18)

Observe that this method reduces to the classical Cowell method (Henrici
1962) when P(x) — 0. For k = 2 the methods reduces to the popular Numerov
method.

What makes the method different from standard methods is that the co-
efficients are recalculated in each step. This fact produces an increase in the
computational cost, however this cost is minimized if we use the parallel imple-
mentation proposed in this paper.

We observe that once the grid has been selected the coefficients Qj. d\. and
do-, can be calculated independently at each point xn. Then at the beginning of
the program we compute in parallel these coefficients for all the points x„ of the
grid. In the same way we compute all the values of the potential at each point
at the beginning of the program. We have called this phase initialization phase.
The following diagram explains the idea (see Table 1).

■234-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Table 1. Diagram for the initialization. Order of the method k, number of total steps
in the integration m n

Processor 1 Processor m

di,d,2 d\, d-i

Ql • • • ttfc Ql • • -Qj.

at the points Xi ■ ■ ■ xn at the points X(n. -llm+l ' ' Xnrn

Table 2 shows the execution time of this initial processes for a method of
order k = 6. and total number of steps 296. We integrate a single equation and a
system of dimension 80 (Z = 0 • ■ • 79). We show how the speed-up is close to the
the number of processors. When we are using a scheme with constant coefficients
the CPU time of the initialization is only due to the computation of the potential
in the grid.

Table 2.

num. of processors T/CPÜ (1 Eq.) Speed-up T/CPU (80 Eq.)

2 0.0254 sec. 1.92 2.0 sec.

3 0.0183 sec. 2.54 1.5 sec.

4 0.0143 sec. 3.08 1.1 sec.

The following figures show a snapshot of the initialization of the parallel
process. The green color represents computation time of each processor. The
yellow/red color represents communication times. The green zone in the pro-
cessor 0 represents the integration. It can be observed that the final speedup
is roughly related to the ratio between the green and yellow areas during the
initialization phase.

We would like to point out in this section that if the equation we are inte-
grating needs an explicit method for its computation, a predictor and a corrector
method can be obtained using the following recurrences

Vn+4 + d,{xn+i.xn,2h)yc
n+.2 + d,{xn+4,xn+2,2h)yc

n

2/f,+3 + d,{xn+3.xn+i.h)yc
n+7 + di{xn+3,xn+2rh)yc

n+1
(19)

-235-

FEUP - Faculdade de Engenharia da Universidade do Porto

Fig. 1. Parallel execution snapshot with 2 processors

m\ XMPI Trace

11
: ► [' *M Scale: 1 x 1
f l_l\ | v l-l-

0.000414 0.011396 0.D22379

Fig. 2. Parallel execution snapshot with 4 processors

-236-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

These recurrences and the procedure mentioned in section 2 allows us to
write the methods in the form

2/£+4 +d[{xn+4,xn,2h)yc
n+2 + di{xn+i,xn+2,2h)yc

n =

= h2a0f?l+3 + Y,aif(Xn+l-i^n+l-i)
j=l (20)

y„+3 + dl{xn+z.,xn+i,h)yc
n+2 + di(xn+3,xn+2,h)yc

n+1 =

= h2ß0f>+3 + ^Ä/OCn + l-.-.l&n-J.

where the coefficients a,- and /?,- are solution of a system of equation similar to
(12). The implementation in this case is similar to the one proposed in [9].

4 Numerical Examples

In order to test the accuracy of the proposed procedure we apply it to the solution
of equation (3) using as U(x) the Leonard-Jones potential which has been widely
discussed in literature. For this problem the potential has been taken as in Simos
and Raptis

UW=m(±-±s) (21)

where m = 500.
The considered problem is the computation of the relevant phase shifts. We

initialize the integration with the popular Numerov method using a small step.
We do not take in account the step given by the Numerov method in the results
presented.

We consider (following for example T. Simos) the asymptotic form of the
solution

(22)
y(x) ss Akxji{kx) - Bkrii(kx) ss .4C(sin(fcr - §)
+ tan<5/ cos(fcr - Q))

where ö~i is the phase shift that may be calculated from the formula

. x y(x2)S(xi) -y(x1)S(x2) ,0„,
tand, = — r—; r rp-^ r (26)

y{xl)C(x2)-y{x2)C(xi)

for x\ and x,2 distinct points on the asymptotic region. We take as asymptotic
region x > 15 and x\ = 15 and x2 = 15 - h, h being the step size. Here
S(x) = kxji(kx) and C(x) — kxni(kx).

Since the problem is treated as an initial-value problem, one needs yo and
y\ before starting the Numerov method. As we have mentioned yo = 0: and
following [4; 1] the solution behaves as constant by xl+1 as x -» 0. According to
this we take j/j = h,+1.

237-

FEUP - Faaddade de Engenharia da Universidade do Porto

In the next table, we have chosen k = b and we represent the error with
respect to the true phase shift of the proposed method using order 6, the results
can be compared with those obtained by Simos [5].

Table 3. k=5. Accuracy in phase shift. Order 6. Number of steps 292, h = 0.05

1 True Phase shift Computed Phase shift Error
0 -0.4831 -0.4832 10"4

1 0.9282 0.9277 5 10~4

2 -0.9637 -0.9639 2 10~4

3 0.1206 0.1170 36 10-4

4 1.0328 1.0349 21 10"4

5 -1.3785 -1.3779 6 10~4

6 -0.8441 -0.843 8 10~4

7 -0.5244 -0.5256 12 10~4

8 -0.4575 -0.4575 -
9 -0.7571 -0.7571 -
10 1.4148 1.4148 -

All computations were carried out on a Silicon Graphics Origin 200 Server
with four processors MIPS R10000 and the MPI library LAM 6.3 [2]. In the
present architecture communication is an operation of write/read using the
shared memory. We have used FORTRAN and Double precision arithmetic with
16 digits accuracy.

Conclusion: As we can see, the fact that we need to compute all the coefficients
in each step means a computational cost of few seconds, even if we are working
with big systems of ODEs. However we are obtaining a significant improvement
in the precision. In the opinion of the authors, the effectiveness of the method
proposed in this work has been demonstrated since parallel machines with at
least a few processors are nowadays quite commonly available.

5 Acknowledgments:

This work was supported by Junta of Castilla y Leon under the Project SA
69/99.

References

1. J.R. Cash and A.D. Raptis Computer Physics Communications, 33 (1984). 299-
304.

2. Dongarra J.J., Otto S. W., Snir M.. Communications of the ACM. 39, (3) 1996.
84-90

-238-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

3. A. D. Raptis and J. Cash. Exponential and Bessel Fitting Methods for the Numer-
ical Solution of the.Schrödinger Equation. Computer Physic Communications. 44
(1987) 95-103.

4. T. E. Simos. IMA J. Numer. Anal. 11 (1991). 347.
5. T. E. Simos and A. D. Raptis. A Four Order Bessel Fitting Method for the Nu-

merical Solution of the Schrödinger Equation. J. Comput. Appl. Math. 43 (1992),
313-322.

6. E.L. Stiefel, and G. Scheifele. Linear and Regular Celestial Mechanics. Springer,
Berlin-Heidelberg-New York (1971).

7. E. Stiefel and D.G. Bettis. Numer. Math. 13 (1969), 154.
8. J. Vigo-Aguiar and J. M. Ferrändiz. A general Procedure for the Adaptation of

Multistep Algorithm to the integration of Oscillatory Problems. SIAM J. of Num.
Anal, 12.

9. J. Vigo-Aguiar and L.M. Quintales, A parallel ODE Solver Adapted to Oscilla-
tory Problems. Proceedings of the 1999 international Conference on Parallel and
Distributed Processing Technology and Applications. H. Arabnia Editor, CSREA
Press. Athens GA 1999. 233-239.

•239-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

An Efficient Parallel Algorithm for the
Symmetric Tridiagonal Eigenvalue Problem

Maria Antonia Forjaz1 and Rui Ralha

Departamento de Matemätica
Universidade do Minho

Campus de Gualtar
4710-057 Braga, Portugal

Tel +351 253604340. Fax +351 253678982
mafSmath.uminho.pt, rjralhaSmath.uminho.pt

Abstract. An efficient parallel algorithm, farmzeroinNR, for the eigen-
value problem of a symmetric tridiagonal matrix is implemented in a
distributed memory multiprocessor with 112 nodes [ForOO]. The basis
of our parallel implementation, is an improved version of the zeroinNR
method [Ral93]. It is consistently faster than simple bisection and pro-
duces more accurate eigenvalues than the QR method. As it happens with
bisection, zeroinNR exhibits great flexibility and allows the computation
of a subset of the spectrum with some prescribed accuracy. Results were
carried out with matrices of different types and sizes up to 104 and show
that our algorithm is efficient and scalable.

1 Introduction

The computation of the eigenvalues of symmetric tridiagonal matrices is one of
the most important problems in numerical linear algebra. The reason for this
is the fact that in many cases the initial matrix, if not already in tridiagonal
form, is reduced to this form using either orthogonal similarity transformations,
in the case of dense matrices, or the Lanczos method, in the case of large sparse
matrices.

Essentially we can consider three different kinds of methods for this problem:
the QR method and their variations [Par80], [Dem97], the divide-and-conquer
methods2 [Cup81], [DS87], and the bisection-multisection methods [Wil65],
[RR78], [Par80], [Ber84]. The bisection method is a robust method but is slower
than the other methods for the computation of the complete set of eigenvalues.
However, because of the excellent opportunities it offers for parallel processing,
several parallel algorithms have been proposed which use bisection to isolate
each eigenvalue and then some additional technique with better convergence rate

1 Candidate to the Best Student Paper Award
2 Available as LAPACK routine sstevd: a good choice if we desire all eigenvalues and

eigenvectors of a tridiagonal matrix whose dimension is larger than about 25 [Dem97,
pg. 217].

■241 -

FEUP - Faculdade de Engenharia da Universidade do Porto

to compute the eigenvalue to the prescribed accuracy [LPS87], [IJ90], [Kal90].
[BW20], [DHvdV93]. One of such methods, dubbed zeroinNR, has been proposed
in [Ral93] and uses an original implementation of the Newton-Raphson's method
for this purpose.

2 A Sequential Algorithm: zeroinNR

Let A be a real, symmetric tridiagonal matrix, with diagonal elements oi,..., a„
and off-diagonal elements 61,..., 6n-i- The sequence of leading principal minors
of A is given by

fpo(A) = l
^Pi(A) = 0l-A (1)

It is well known that the number of variations of sign in this sequence equals the
number of eigenvalues of A which are strictly smaller than A.

To avoid overflow problems, the sequence (1) can be modified to the form

f 9o(A) = 1
{ «71(A) =ai-A (2)
[<Z,-(A)=p1-(A)/pI-_i(A)) i = 2,3,...,n

and the terms of the new sequence can be obtain by the following expressions.

r <?o(A) = 1
4<7i(A)=ai-A (3)
[<7,(A) = (a, - A) - 6?/<?,-_i(A), i = 2,3,.. ..n

where the number of negative terms g,-(A), i = 0,..., n. is equal to the number
of eigenvalues strictly smaller than A. This is the basis for the bisection method
implemented in [BM+67], which is known to have excellent numerical properties
in the sense that it produces very accurate eigenvalues. The drawback of bisec-
tion is its linear convergence rate3 that makes the method slower than others,
at least for the computation of the complete system. Different authors have pro-
posed modifications of the simple bisection method in order to accelerate its
convergence. One such proposal, dubbed the zeroinNR method, has been given
in [Ral93] and essentially uses Newton-Raphson's method to find an eigenvalue
after it has been isolated by bisection. The correction pn{xk)/p'n{xk), in the
iterative formula of the Newton-Raphson method,

xk+1 *-Xk - !p\, (4)
is obtained without explicitly calculating the values of the polinomial pn(xi<)-
and its derivative p'n(xk), therefore avoiding overflow and underflow in such
3 The bisection method converges linearly, with one bit of accuracy for each step.

-242-

VECPAR '2000 - 4 th International Meeting on Vector and Parallel Processing

computations. For this purpose the following algorithm has been derived. From
(2) we have,

Pi = QiPi-\

and by differentiation

p'i = q'iPi-i + QiPi-i

and carrying out the division by p,, we obtain the following expression

?i = i + p±± (5)
Pi Qi Pi

which relates the arithmetic inverses of the Newton-Raphson correction for the
polynomials p,_i and pi, and their quotient qt.

From the recursive expression, (3), we have that,

9; = -l + &?%^ i = 2,3,...,n
Q>-i

and carrying out the division by g,,

qi qt V Qi-i li-iJ

Using the notation

AQi=q'i/Qi-, Api^p'Jpi

the complete computation of,

Apn =p'n{x)/p„(x)

is expressed in the following equations,

q\ = a\ — x
Aqi = Api = -l/<?i

qt = o, - x- &■/g,-_i "I (6)
Aqt = (-l + 6?/g,-_i *Aq,-l)/qi \i = 2,...,n
Ap, = Aqi + Api-i J

where Aqt = q\{xk)/qi{xk) and Ap, = p\(xk)lpi(xk).
It is important to observe that in the computation of Apn using the formulae

(6), the values g,, i = 1,..., n, are obtained, and its signs can be used to derive a
method that combines bisection and Newton-Raphson's iteration. We will refer
to this method as the zeroinNR algorithm.

So, given an interval [a, 3} which contains an eigenvalue, and given an ap-
proximation xk € [a.ß], the zeroinNR method will produce, in each step, an
approximation xk+i to the eigenvalue.

• 243 -

FEUP - Faculdade de Engenharia da Universidade do Porto

The zeroinNR method although not as fast as the QR method (according
to [Ral93]: zeroinNR is about two to four times slower than QR for the com-
putation of all eigenvalues, depending on the characteristics of the spectrum) is
consistently faster than simple bisection (generally, twice as fast) and retains the
excellent numerical properties of simple bisection. In the present work we have
introduced some modifications in the original zeroinNR method which actually
make it faster. Numerical tests were carried out in a transputer based machine
using double precision arithmetic. The methods were implemented in Occam 2,
the official transputer's language.

We were able to find out the errors in the computed eigenvalues since we
have used matrices for which analytic expressions for the eigenvalues are known.
We conclude that, for small matrices, the accuracy of zeroinNR is comparable
to that of the QR method as implemented in the MatLab system [Mat99], but
as the size of the matrices grows, the zeroinNR method provides more accurate
eigenvalues than QR method.

This can be appreciated in Figure 1, where the absolute erros of a matrix
of size 1000, are plotted. We have used the tridiagonal matrix with a,. = 2 and
bj = 1 which eigenvalues are given by

A,- = 2 + 2 cos
ITT

n+.l
i = 1.. .,n.

9.0E-15

8.0E-15

7.0E-15

6.0E-15

5.0E-15

4.0E-15

3.0E-15

2.0E-15

1.0E-15

0.0E+00

QR
zeroinNR

0 100 200 300 400 500 600 700 800 900

Fig. 1. Absolute errors of the eigenvalues of a matrix (n — 1000) computed with
zeroinNR and QR.

3 An Efficient Parallel Algorithm: farmzeroinNR

The sequential zeroinNR method can be readily adapted to parallel processing
since several disjoint intervals can be treated simultaneously by different proces-
sors. We have developed a parallel organization under a processor farm model

■244-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

and we will refer to this parallel implementation as the farmzeroinNR method.
The typical architecture for this model is a pipeline of processors (workers),
where the master sends tasks to workers and gets back the results produced.

Each time a processor produces two disjoint intervals containing eigenvalues,
as the result of a bisection step, it keeps only one of them and passes back to the
master the second interval which is kept in a queue of tasks. As soon as there
is an available worker somewhere in the line, a new task is fed into the pipeline.
Because of this mechanism, the algorithm achieves dynamic load balancing.

A dynamic distribution of tasks results from the fact already mentioned, as
soon as a worker finishes a task, it will get a new one from the queue (which is
managed by master), if such queue is not empty. The advantage of such dynamic
workload distribution gets more important as n grows. It must be noted that,
because some tasks take longer to finish than others, workers may not execute
the same number of tasks, but will spend about the same time working.

The pseudocode to the master and worker processors are given in Algorithm
1 and Algorithm 2, respective!}7.

eig <— 0
for k <— 1 .. p — 1 do

{ worker[k] <r- initialJnterval[k]
procs «— 0
while eig < n do

' case input-channel is_a
if procs > 0 do

j output «— interval to workers
interval —> I \ procs <— procs — 1

else —>
{ queue <— interval

' eig «— eig + 1
if queue not empty do

j output <— interval to workers
else —>

{ procs <— procs + 1

eigenvalue

send signal to terminate

Algorithm 1: FarmzeroinNR master processor pseudocode.

It must be noted that messages exchanged between the master and some
worker in the pipeline need to be routed through the processors that lay in
between. For the global performance of the system it is important that messages
reach their destination as quickly as possible, therefore communication must be
given priority over the computation.

To compute eigenvectors, once we have computed (selected) eigenvalues, we
can use inverse iteration. Convergence is fast but eigenvectors associated with
close eigenvalues may not be orthogonal. The LAPACK's routine sstein uses re-

245-

FEUP - Faculdade de Engenharia da Universidade do Porto

while not receive signal to terminate do
interval •*— input-channel
if interval has more than one eigenvalue do

J intervals *- bisection method(interval)
\ output «— intervals (to the master)

else —¥
eig <— extract isolate eigenvalue
output «— eig (to the master)

Algorithm 2: FarmzeroinNR worker processor pseudocode.

orthogonalization of such eigenvectors. This does not solve the problem when
there is a cluster with many close eigenvalues [Dem97, pg. 231], and recent
progress on this problem appears to indicate that inverse iteration may be re-
paired to provide accurate, orthogonal eigenvectors without spending more than
0(n) flops per eigenvector. This will make bisection, or zeroinNR and repaired
inverse iteration the algorithm of choice in all cases, no matter how many eigen-
values and eigenvectors are desired.

4 Performance Analysis

As already mentioned, a typical architecture for the processor farm model con-
sists of a bidirectional array, forming a single pipeline (SP). with the master
placed at one end of the array (Fig. 2).

p, - p3 - P^|-{P^7)4PT]--JP^

Fig. 2. Single pipeline, with 112 nodes.

It is predictable that as the number of workers increases, the communication
overhead becomes more significant and processors that are further away from the
master take longer to communicate with him. Furthermore, the activity in the
links of the processors which are closer to the master grows with the number of
processors and some congestion is to be expected if the computational complexity
of each task is not sufficiently large. In an attempt to overcome the problems just
mentioned, we decided to test the parallel algorithm with a modified topology,
referred to as multiple pipeline (MP). which consists of seven pipelines, each one
with 16 transputers; the masters of such pipelines are themselves connected in
a single pipeline (Fig. 3).

At the beginning, the interval that contains all the eigenvalues is decom-
posed in 7 subintervals of equal width which are distributed among the different
pipelines.

■246-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

P,15

/■ 's

P2.15 P3.15 '4.15 P5.15 Pö.15

f

P715

I I I I I I I
Pi.« P214 P3.14 P4.I4 P5.14 P&14 P7.I4

I I I I I I I
Pt.13 P2.13 P3.I3 P4.13 P5.13 P613 P7.13

I
1
I
1
I
I

I

1 1 1 '

1 1 1 t

Pl.2 P2.2 P3.2 P« P5.2 P62 P7.2

| 1 1 1 1 1 I
Pl.l P2.1 P3.1 P4.1 P5.1 Pe.1 P7.1

I I I I I I I
M, M2 M3 M4 M5

■

M6 M7

■

Fig. 3. Multiple pipeline, with 112 nodes.

Although this may reduce to some extent communication overhead and wai-
ting times, it has an important disadvantage which is an eventual deterioration of
the load balancing, which becomes critical when some of the subintervals contain
a much larger number of eigenvalues than others. Therefore, the spectral distri-
bution of the matrix is an important factor to be considered when comparing
the performance of the SP and MP architectures. For this reason we have used
four different types of matrices (see Table 1 where a,-,i = l.....n, represents
the diagonal elements &,-, i = 1...., n - 1, represents the sub-diagonal elements)
with different spectral distributions (see Figures 4, and 5),and sizes n ranging
from one thousand to ten thousand.

Matrix Elements Analitical Formula

I
a, = 0

b, =b
/ 0, ** V < a + 2b cos >
I n + 1Jfc=i

II

a.i = a — b

a, = a. i = 1,..., n

an = a + b

bi = b. i=l n

<^ a + 2b cos -—-—'— }
I 2n h=i

III
a, = 0

{-"+tt-'L bi = y/i(n - i)

IV
a, = -[(2. - \){n - 1) - 2(» - l)2]

bj = i(n — i) {-**-"L
Table 1. Matrix Types.

-247-

3 250
(0

I 200
• 150
'S
S ioo
a
I 50
Z 0

FEUP - Faculdade de Engenharia da Universidade do Porto

Sublntervals of [0,4] Subintervals of [0,4]

Fig. 4. Spectral distributions for matrix I (left) and matrix II (right), with n = 1000.

Z 50 r o
43
E

« 400 r
2 350
| 300
5,250 -
• 200
° 150
1 100

HiimiUL
Sublntervals of [-999, 999] Sublntervals of [-S99000, 0]

Fig. 5. Spectral distributions for matrix III (left) and matrix IV (right), with n = 1000.

We have computed the efficiency in the usual way, i.e.,

112 Tn2

where T\ represents the time taken by a single transputer executing the sequen-
tial implementation of zeroinNR, and Tn-y is the time taken by farmzeroinNR
with 112 processors. In Table 2 such ratios are given, representing by £(SP)
and E(MP) the efficiency obtained for the single pipeline and multiple pipeline
implementations, respectively.

Matrix I Matrix II Matrix III Matrix IV
n £(SP) £(MP) E(SP) £(MP) £(SP) £(MP) £(SP) £(MP)

1000 55% 45% 60% 72% 61% 71% 60% 35%
5000 80% 56% 92% 80% 92% 89% 90% 38%
7000 93% 64% 91% 80% 91% 85% 94% 399c
10000 95% 56% 99% 85% 99% 91% 97% 39%
Table 2. Efficiency of farmzeroinNR, for matrices of type I, II, III and IV

As it can be appreciated from this table, the MP implementation is less effi-
cient than the SP implementation, except for the case of Matrices II and III of

-248-

VECPAR '2000 - 4 th International Meeting on Vector and Parallel Processing

size n = 1000. In general, we have obtained better efficiency values with the SP
architecture and we conclude that, for n sufficiently large, the communication
overhead is not as important as the unbalance in the distribution of tasks intro-
duced by the MP architecture. This is particularly clear in the case of matrix
IV since for the larger values of n the efficiency for SP is about 2.4 times better
than the efficiency for MP. The explanation for this can be found in Figure 5
(right side): the number of eigenvalues received by each one of the seven pipelines
presents, in the case of matrix IV, a large variation, from about 70 to about 370.
Another important aspect that must be taken into account is that in the MP
implementation there are only 105 workers, since 7 processors are playing the
role of master. However, even if we had used the modified formula

105 TU2

to compute the efficiency for the MP implementation, the values produced in
this way would still be lower than those obtained for the SP architecture in most
cases.

5 Conclusions

We have carried out a parallel implementation of an efficient algorithm, dubbed
zeroinNR, for the eigenvalue problem of a symmetric tridiagonal matrix, on a
distributed memory system. The sequential zeroinNR method, although not as
fast as QR. is consistently faster than simple bisection and retains the excellent
numerical properties of this method. We have numerical evidence to support
the claim that our method produces eigenvalues with smaller errors than those
produced by QR. For the parallel implementation we used a farm model with
two different topologies: a single pipeline (SP) of 112 processors and a multiple
pipeline implementation (MP) consisting of seven pipelines, each one with 16
processors. The MP architecture reduces the communication overhead to some
extent but is not able to retain fully the excellent load balancing of the SP
implementation. This trade-off is not clear since it depends on the spectral dis-
tribution of each particular matrix. We have used matrices of different types to
study this trade-off and conclude that for matrices sufficiently large, the parallel
algorithm under the SP architecture performs better than the MP architecture.
It must be emphasized that the parallel algorithm under the SP architecture is
very efficient: for matrices of size n = 10000 we got efficiency values which are
in all cases tested larger than 95%.

References

[ABB+95] E. Anderson, Z. Bai, C. Bischop, J. Demmel, S. Hammarling J. Dongarra.
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov.
and S. Sorensen. LAPACK User's Guide. Series: Software, Environments
and Tools. SIAM, Philadelphia. PA, 2nd edition edition. 1995.

249-

FEUP - Faculdade de Engenharia da Universidade do Porto

[BCC+97] L. S. Blackforda, J. Choi, A. Cleary. E. D'Azevedo, J. Demmel, I. Dhillon
J. Dongarra., S. Hammarling, G. Henry. A. Petitet, K. Stanley, D. Walker
and R. C. Whaley. ScaLAPACK User's Guide. SIAM, Philadelphia, PA

1997.
[BE78] R. H. Barlow and D. J. Evans. A parallel organization of the bisection

algorithm. The Computer Journal (22):267-269, 1978.
[Ber84] H. J. Bernstein. An accelerated bisection method for the calculation of

eigenvalue of a symmetric tridiagonal matrix. Numer. Math., (43):153-
160, 1984.

[BM+67] W. Barth, R. S. Martin, et al. Calculation of the eigenvalues of a symmetric
tridiagonal matrix by the bisection method. Numer. Math., (9):386-393,
1967.

[BW20] A. Baserman and P. Weidner. A parallel algorithm dor determining all
eigenvalue of large real symmetric tridiagonal matrices. Parallel Comput-
ing. (18):1129-1141, 1920.

[Con96] Jose Manuel Badfa Contelles. Algoritmos Paralelos para el Cdlculo de los
Valores Propios de Matrices Estructuradas. PhD thesis, Universidad Po-

litecnica de Valencia, 1996.
[Cup81] J. J. Cuppen. A divide and conquer method for the symmetric eigenvalue

problem. Numer. Math., (36):177-195, 1981.
[Dem97] James W. Demmel. Applied Numerical Linear Algebra. Society for Indus-

trial and Applied Mathematics, 1997.
[DHvdY93] J. Demmel, M. Heath, and H. van der Vorst. Parallel numerical linear

algebra. In In A. Iserles, Ada Numerica, volume 2, Cambridge University
Press, UK, 1993.

[DS87] J. J. Dongarra and D. C. Sorense. A fully parallel algorithms for the
symmetric eigenproblem. SIAM J. Sei. Stat. Comput, 8(2):sl39-sl54, 1987.

[ForOO] Maria Antonia Forjaz. Algoritmos Paralelos para o Cdlculo de Valores
e Vectores Proprios em Sistemas de Multiprocessadores de Memöria Dis-
tribuida. PhD thesis, Universidade do Minho, 2000.

[IJ90] I. C. F. Ipsen and E. R. Jessupe. Solving the symmetric tridiagonal eigen-
value problem on the hypercube. SIAM J. Sei. Stat. Comput, 11(2):203-
229. 1990.

[Kal90] T. Z. Kalambouskis. The symmetric tridiagonal eigenvalue problem on a
transputer network. Parallel Computing, (15):101—106, 1990.

[LPS87] S. S. Lo, B. Phillipe, and A. Sameh. A multiprocessor algorithm for the
symmetric eigenproblem. SIAM J. Sei. Stat. Comput, (8):155-165, 1987.

[Mat99] Using matlab. The Math Works Inc., 1999.
[Par80] B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall Series in

Computational Mathematics, 1980.
[Ral90] R. Ralha. Parallel Computation of Eigenvalues and Eigenvectors using

Occam and Transputers. PhD thesis, University of Southampton. 1990.
[Ral93] R. Ralha. Parallel solution of the symmetric tridiagonal eigenvalue problem

on a transputer network. In Proceedings of the Second Congress of Numer-
ical Methods in Engineering,, Spanish Society of Numerical Methods in
Engineering, Spain, 1993.

[RR78] A. Ralston and P. Rabinowitz. A First Course in Numerical Analysis.
McGraw-Hill, 1978.

[Wil65] J. H. Wilkinson. The algebraic eigenvalue problem. Oxford University
Press, 1965.

-250-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Performance of Automatically
Tuned Parallel GMRES(m) Method

on Distributed Memory Machines

Hisayasu KURODA1 *. Takahiro KATAGIRI12, and Yasumasa KANADA3

1 Department of Information Science, Graduate School of Science.
The University of Tokyo

2 Research Fellow of the Japan Society for the Promotion of Science
3 Computer Centre Division, Information Technology Center,

The University of Tokyo
2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8658, JAPAN

Phone: +81-3-5841-2736, FAX: +81-3-3814-2731
{kuroda, katagiri, kanada}@pi.cc.u-tokyo.ac.jp

Abstract. As far as the presently available public parallel libraries are
concerned, users have to set parameters, such as a selection of algorithms,
an unrolling level, and a method of communication. These parameters
not only depend on execution environment or hardware architecture but
also on a characteristic of the problems. Our primary goal is to solve
two opposite requirements of reducing users parameters and getting high
performance. To attain this goal, an auto-tuning mechanism which auto-
matically selects the optimal code is essential. We developed a software
library which uses GMRES(m) method on distributed memory machines,
the HITACHI SR2201 and HITACHI SR8000. The GMRES(m) method
is one of the iterative methods to solve large linear systems of equa-
tions. This software library can automatically adjust some parameters
and selects the optimal method to find the fastest solution. We show
the performance of this software library and we report a case where our
library is approximately four times as fast as the PETSc library which
is widely used as a parallel linear equation solver.

1 Introduction

Linear algebra, in particular the solution of linear systems of equations and
eigenvalue problems, is the basic of general calculations in scientific computing.
When a coefficient matrix of linear systems of equations is large and sparse,
iterative methods are generally used. For example, if a coefficient matrix is real
symmetric and positive definite, the Conjugate Gradient method (CG) is often
used. In the case of a nonsymmetric matrix, there are a number of iterative meth-
ods with lots of variations [1.2]. Therefore, in the nonsymmetric case, the most
efficient method is left for to further discussion. In addition, there are a few par-
allel implementations of the iterative methods in the nonsymmetric case. In this

Candidate to the Best Student Paper Award

-251 -

FEUP - Faculdade de Engenharia da Universidade do Porto

paper, we focussed on the GMRES(m) which is improved GMRES(Generalized
Minimal RESidual method), and developed its library on distributed memory
machines.

The GMRES is one of the Krylov subspace solution methods and finds a
suitable approximation for the solution x of Ax = b by using the minimum
residual approach at every iteration step.

The GMRES(m) restarts the GMRES after each m steps, where m is a
suitably chosen integer value. The original method without restarting is often
called full-GMRES. This restarting reduces both calculation counts and the size
of memory allocation.

This paper is organized as follows. Description of the algorithm of our version
of GMRES(m) in Section 2. Section 3 is about the parameters for auto-tuning,
and how to search for the optimal parameters. In Section 4, we show auto-tuned
parameters and execution time of our library using the auto-tuning methodology.
Finally. Section 5 gives conclusions for this paper.

2 The GMRES(m) Algorithm

When given an n x n real matrix A and a real n-vector b. the problem considered
is: Find x which belongs to IR" such that

Ar = b . (1)

Equation(l) is a linear system. A is the coefficient matrix, b is the right-hand
side vector, and x is the vector of unknowns.

Figure 1 shows our version of preconditioned GMRES(???) algorithm. Note
that A" in the Figure 1 is a preconditioning matrix and this algorithm uses right-
preconditioning because of the advantage that it only affects the operator and
does not affect the right-hand side.

2.1 Parallel implementation of GMRES(m)

The coefficient matrix A, the vector of unknowns x. the right-hand side vector
b. the temporary vectors Vi (m + 1 vectors), and orthogonalized vector w are
distributed by row-block distribution and each processor element(PE) except
for the last PE has the same number of rows. On the other hand, the matrix H.
the vector s, and the vector c are the same on every PE.

Since the vector x and v, are needed to be gathered on every PE, a temporary
vector of size n. where n is the size of matrix A, is required.

In the parallel implementation, lines 2, 7. and 29 in the Figure 1 which include
matrix-by-vector products and line 9 in the Figure 1 which includes dot product
require interprocessor communications.

In lines 14-22 in the Figure 1 which include QR decomposition by using
Givens rotations, every PE updates the matrix H which holds the same data. It

■252-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

1: j-o=initial guess
2: r = b — Axo
3: for j=l,2.---
4: vo = r/||r||
5: e0 = ||r||
6: for 7=0,1.- • -.m — 1
7: w = AK~lVi
8: for it=0,l.•••,?'
9: hk,i = (w,vk)

10: w — w — hk.iVk
11: end
12: hi+i.i = ||ic||
13: i';+i = w/hi+i,i
14: for A—0.1,■••,?'-1

15:

16: end

17: c, =

hk.i Ck sk hk,i

hk + i.j -Sk ck hk+i,i

.■+*L

18:

19
20
21
22
23

24
25
26
27

28:

29
30
31
32

e;+i = -s,e,
e, = c,e,
A-7,i = Cjh,,j + Sjh, + i,i

hi+i., = 0.0
If e, + i is small enough then

update x: (processes 25-28)
quit

end
for k=0.1,---,m - 1

Vk
end

H, 1(e0,ei, ■ ,£k)

x = xo + K 1 J> ViVi
i=0

r — b- Ax

W ll'"ll/IHI 's small enough quit
Xo = x

end

Fig. 1. The preconditioned GMRES(m) algorithm

r. in, and w are vectors and if i ^ j then vt and Vj are different vectors, and
not elements of the same vector v. m is the restarting frequency.

seems that holding H is inefficient. However m is several hundreds at the most
and the decomposition of the matrix H whose size is (m + 1) x m is inefficient
to parallelize. Therefore, the overhead time that every PE updates at the same
time is very small.

3 Method for searching parameters

We have developed automatically tuned parallel library by using CG [3]. In
this section description of several tuning factors to be considered in precondi-
tioned GMRES(m) algorithm and methods of tuning parameters automatically
are provided.

Our library automatically sets several parameters to get high performance.
This action is executed after being given a problem. Therefore, our library can
select the best method according to a characteristic of the problem. Our library
provides a lot of source codes. Users only have to compile them once. While our
library code is being executed, the optimal code is selected one after another
automaticallv.

•253-

FEUP - Faculdade de Engenharia da Universidade do Porto

3.1 Matrix storage formats

In the sparse matrix formats, we store the nonzero elements by rows, along
with an array of corresponding column numbers and an array of pointers to
the beginning of each row (see Figure 2). It is called as compressed row storage
format.

A =

'a 6 0 0"
c de 0
ofgh

Loo« jj

rp[5]={0.'2.5.8.10}: /* pointers to the beginning of each row */
cval[10]={0.1,0,1.2.1.2,3.2.3}; /* indices */
ava\[10] = {a.b,c.d.e.f,g,h,i,j}\ /* elements */

Fig. 2. Compressed row storage format

In case that the number of nonzero elements at each row are almost equal,
compressed row storage format was converted to a matrix format whose size of
each row is fixed (see Figure 3). This is called compressed row storage format for
unrolling. Using such a matrix format, we expected to save the execution time
because of the effect of unrolling.

cval[12] = {0.1,0.0.1.2.1.2.3,2.3.0}; /* indices */
av&\[V2] = {a. b,0. c.d.e. f, g. h.j. j.0}: /* elements */
nsize[4]:={2.3.3,2}: /* the number of elements of each row*/
csize=3: /* fixed size */

Fig. 3. Compressed row storage format for unrolling

Before executing the main iteration, the actual time of the matrix-by-vector
product was measured. With this information, we can select the best matrix
storage format.

3.2 The stride size of loop unrolling for matrix-by-vector products

To perform the matrix-by-vector product at high performance, we should se-
lect the best size of the stride for loop unrolling. This depends on the machine
architectures and optimization level of the compilers.

Our library prepares a large number of loop unrolling codes. For example,
if the number of nonzero elements of a matrix .4 at each row is smaller than

■254-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

10, all expanded loop unrolling codes are examined. In addition to unrolling the
inner-loop, we unroll also the outer loop with strides 1, 2, 3, 4, and 8.

There are two types of codes, i.e., a non-prefetch code and a prefetch code.
The non-prefetch code uses indirect access just as it is or entrusts the compiler
with the treatment. The prefetch code takes off indirect access to the element of
arrays (see Figure 4).

Non-prefetch code Prefetch code
1: do i=l,10 1: m=ind(l)
2: s = s + a(i) * b(ind(i)) 2: do i=l,9
3: end do 3: s = s + a(i) * b(m)

4: m=ind(i-|-l)
5: end do
6: s = s + a(10) * b(m)

Fig. 4. Non-prefetch code and prefetch code

As for the prefetch codes, we unroll the outer loop so that the sizes of the
stride can be 1, 2. 3. and 4. In total, there are 9 ways of the unrolling codes in
each of the number of nonzero elements at each row.

Same as in the case of the matrix format, actual time of the matrix-by-vector
product was measured in order to select the best unrolling code in the above.

3.3 How to comunicate in matrix-by-vector products

In matrix-by-vector products, we need a gather operation. Because the elements
of a vector are distributed on all of the PEs. We can select the following five
implementations for the communications.

No dependence on the location of the nonzero elements of matrix .4:

1. Use MPI-AUgather function from the MPI library.
2. Gather in 1 PE then broadcast with MPLBcast function.

Dependence on the location of the nonzero elements of matrix ,4:

3. First use MPLIsend function, next use MPIJrecv function.
4. First use MPIJrecv function, next use MPIJsend function.
5. Use MPLSend and MPIJRecv functions.

A communication table is used in the method from 3 to 5. This table indicates
the relation between a element index of a vector and a PE number which requires
the indexed value. This relation is created from nonzero element indices of a
matrix A. By using this communication table, communication traffic becomes
very small because an element is transmitted to a PE which requires it. We
communicate all of the elements from minimal index to maximal index to other

■255-

FEUP - Faculdade de Engenharia da Universidade do Porto

PEs so that we need only one communication step. In the case that nonzero
elements of matrix A are located in limited parts, using the communication
table is quite effective.

In the method 5, since both MPLSend and MPLRecv functions are block-
ing communication, execution of other instructions is suspended. However this
method saves starting time for the communication. If the total amount of com-
municated data is small we can get high performance by selecting the order of
communication.

As in the case of the matrix format, the actual time of the matrix-by-vector
product was measured and the best way from the alternatives above was selected.

3.4 Restarting frequency

The larger the restarting frequency m. the smaller the iteration count we need.
However if m is large, the execution time of one iteration increases with the
increment of iteration counts. Because in the orthogonalization, we must cal-
culate a new vector to be orthogonalized to all vectors which have caluculated
by earlier iteration (lines 8-11 in the Figure 1). The total amount of calculations
for the orthogonalization is proportional to the square of the iteration counts.

There are many ways to decide on m [5]. In our implementation we change
the value of ??? dynamically [6]. Here, let mmax be maximal restarting frequency.
We decide on the value of m as follows:

(1) m=2 (initial value).
(2) Add 2 to m if 777 < ?77max.

(3) Back to (1).

Our library sets 128 to mmax. If the library cannot allocate memory, it sets
the maximal size to mmax within the maximum permissible memory allocation.
The reason why we decide mmnx is to save the amount of calculation for the
orthogonalization.

3.5 Gram-Schmidt orthogonalization

Modified Gram-Schmidt orthogonalization (MGS) is often used on single proces-
sor machines because of its smaller computational error. However on distributed
memory machines, it is not efficient because of the frequent synchronization
especially in the case of a large iteration count.

On the other hand, classical Gram-Schmidt orthogonalization (CGS) is ef-
ficient on distributed memory machines because the synchronization is needed
only once.

In case of using CGS. lines 8-11 in the Figure 1 are replaced as shown in
Figure 5.

CGS has less in computational error than MGS. Therefore, our library pro-
vides iterative refinement Gram-Schmidt orthogonalization [4] (see Figure 6).

■256-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

1 for k=0,l.---,i
2 hk., = (u\vk)
3 end
4 for fc=0,l.---,i
5 ■w = w - hk.H'k
6 end

Fig. 5. Classical Gram-Schmidt orthogonalization

1 for k=0,l,---,i
2 hk,i = (w,Vk)
3 end
4 for fc=0,l,---,i
5 u> = u' - hk,H'k
6 end
7 for A—0,l,---,i
8 hk = (w,vk)
9 hk,i = hk,i + hk

10 end
11 for fr=0,l"V-
12 w — w - hkVk
13 end

Fig. 6. Iterative refinement Gram-Schmidt orthogonalization

The execution time by this method is twice as large as primary CGS. However
it is comparable to MGS in computational error. In our library, we measure
the orthogonalization time for calculating a new vector to be orthogonalized to
«'max/2 vectors. We then select the fastest method. MGS or CGS.

On single processor machines, the MGS is advantageous to the CGS because
of localization of memory access. On the other hand, on distributed memory ma-
chines, it is not clear which is the best because we must consider the combination
of cache memory size, the number of vectors, the number of PEs. interprocessor
communications speed and so on.

When the convergence is not improved at two straight steps, we change to
the iterative refinement Gram-Schmidt orthogonalization.

3.6 Preconditioning

There are many occasions and applications where iterative methods fail to con-
verge or converge very slowly. Therefore, it is important to apply preconditioning.

In our library, we apply diagonal scaling to a coefficient matrix .4. In this case,
we expect that not only it helps to reduce the condition number and often has
a beneficial influence on the convergence behavior but also the computational
complexity and memory allocation are reduced by fixing to 1 in all diagonal
elements. In addition to the diagonal scaling, we can select the following three
implementations.

■257-

FEUP - Faculdade de Engenharia da Universidade do Porto

1. No preconditioning.
2. Polynomial Preconditioning [7].
3. Block incomplete LU decomposition [8].

Let A be the scaled matrix such that diag(A) = I.
In case 2. the matrix A can be written A — I — B, and A~l can be evaluated

in a Neumann series as

A-1 = (I- B)-1 =I + B + B'2 +B3 + --- . (2)

We take a truncated Neumann series as the preconditioner. e.g. approximat-
ing A-1 by A'-1 — I + B. In this case, A'-1 is very similar to A but plus and
minus signs of elements of A"-1 are reversed except for the diagonal elements.
Since this preconditioning does not need extra memory allocation which holds
matrix I + B data, in particular GMRES(???) which requires a lot of memory
allocation, it is very useful.

However, approximation of ,4_1 by / + B is efficient only when matrix .4 is
diagonally dominant, namely, spectral radius of B satisfies the relations p(B) <
1. If p{B) > 1 then I + B does not approximate A~l.

In the preconditioner 3. our library employs zero fill-in ILL" factorization
called as ILL(O) on each individual block, which is diagonal submatrix on each
PE. In this case, we assume A' = LU.

In lines 7 and 28 in the the Figure 1, there is the matrix-by-vector product
in the form of K~lr. When we assume q = (LU)~1i\ we can solve linear system
of equations LUq = r. where q is the vector of unknowns.

To solve q of the linear system is as follows.

Lz — r (Forward substitution) .
Uq = z (Backward substitution), '

where z is a temporary vector. As shown above, it is possible to calculate K~1r.
If restarting frequency m is large, the preconditioning is more efficient. Be-

cause the overhead time of preconditioning depends on the whole iteration count
to converge, setting m at a large value reduces the total iteration count.

The best preconditioning selection is as follows. We iterate the main loop
(lines 6-24 in the Figure 1) for m — 2 by using every method. Next, we select the
method whose relative decrease of the residual norm (|b'2||/||?"o||) is the smallest.
Note that we do not consider the execution time, we employ the method which
reduces the residual norm the most after the same number of iterations.

4 Experimental results

We implemented our auto-tuning methodologv on the HITACHI SR2201 and
HITACHI SR8000.

The HITACHI SR2201 system is a distributed memory, message-passing par-
allel machine of the MIMD class. It is composed of 1024 PEs. each having 256

■258-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Megabytes of main memory, interconnected via a communication network hav-
ing the topology of a three-dimensional hyper-crossbar. The peak interprocessor
communications bandwidth is 300 Mbytes/s in each direction. We used the HI-
TACHI Optimized Fortran90 V02-06-/D compiler, and compile option we used
was - WO. 'opt(o(ss),fold(l))'. We also used the HITACHI Optimized C compiler,
and compile option we used was + 04 -Wc.-hDl.

The HITACHI SR8000 system is a distributed memory, message-passing par-
allel machine of the MIMD class like the HITACHI SR2201. It is composed of
128 nodes, each having 8 Instruction Processors (IPs), 8 Gigabytes of main
memory, interconnected via a communication network having the topology of
a three-dimensional hyper-crossbar. The peak interprocessor communications
bandwidth is 1 Gbytes/s in each direction. We used the HITACHI Optimized
Fortran90 V01-00 compiler, and compile option we used was - WO, 'opt(o(4),fold(l)J'
-noparallel. We also used the HITACHI Optimized C compiler, and compile op-
tion we used was +04 -Wc.-hDl -noparallel.

We evaluated performance with the following conditions:

- Convergence result : ||n-||/||r0|| < 1.0 x 10-12

- Initial guess : x0 = (0.0. • • •, 0)r

- Precision type : double

4.1 Test problems

Evaluation on our library by employing three problems whose maximal number
of nonzero elements of a matrix A at each row is 3. 5, and 7.
Problem 1

The coefficient matrix A is a Toeplitz matrix such as

A =

where R — 1.0, 1.5, and 2.0. The right-hand side vector is b = (1,1, • • •, 1) .
The size of matrix A is 4,000.000.

Problem 2
An elliptic boundary value problem of partial differential equation:

-vxx - ityy + Rux = g{x,y) ,
u{x,y)\dn = l + xy ,

where the region is .<? = [0,1] x [0,1], and R = 1.0. The right-hand side
vector b is set to the exact solution of v = 1 + xy. We discretize the region
by using a 5-point difference scheme on a 400 x 400 mesh. The size of matrix
A is 160.000.

Problem 3
An elliptic boundary value problem of partial differential equation:

2 1
0 2 1
R 0 2 1

R 0 2 •••

■259-

FEUP - Faculdade de Engenharia da Universidade do Porto

-uxx -uyy - M-; + Rux = g{x,y,z) ,
u{x,y)\dn = 0.0 .

where the region is /? = [0,1] x [0,1] x [0.1]. and R = 1.0 and 100.0. The right-
hand side vector b is set to the exact solution of u = exy: sin (TO) x sin (Try) x
sin(7rc). We discretize the region by using a 7-point difference scheme on a
80 x 80 x 80 mesh. The size of matrix A is 512,000.

4.2 The results

Tables 1-3 show the execution time on each problem in the case of no auto-
tuning, auto-tuning, and using PETSc[4]. In addition, they show auto-tuned
parameters in the auto-tuning case.

The calculation time of the QR decomposition in the lines 14-23 of Figure
1 was less than 1 second on every problem. Even though each PE contains the
QR decomposition, this overhead time was very small and it can be ignored.

Following parameters were set as the sample of the no auto-tuning case. These
are common parameters which were .used comparison with the no auto-tuning
case and the auto-tuning case.

Matrix storage format : Compressed row storage format for unrolling.
Unrolling : Non-prefetch and no unrolling code.
Communication : Use MPLAllgather funuction from the MPI library.
Restarting frequency : 30 (fixed)
Orthogonalization : Iterative refinement Gram-Schmidt.
Preconditioning : None.

In case of the auto-tuning version the leftmost explanation has the following
meaning.

iter. : Iteration count.
time : Total execution time including auto-tuning, (sec)
unro. : Unrolling type. For example, P(2.3) means prefetch code,

two outer loops expanded, and three inner loops expanded.
On the other hand. N(2,3) means non-prefetch code.

com. : Communication type.
Send • • • use MPLSend and MPIJRecv in pairs.
Isend • • ■ use MPIJsend and MPIJrecv in pairs.
Irecv • • • use MPIJrecv and MPIJsend in pairs.

orth. : Orthogonalization type.
prec. : Preconditioning type.

I + B ■ ■ ■ polynomial preconditioning.
BILU • • • block incomplete LU decomposition.

The matrix storage format in Tables 1-3 has been omitted since the com-
pressed row storage format for unrolling is selected in all problems.

As for PETSc. we used it with almost default parameter values. For example,
the restarting frequency is 30. the technique for orthogonalization is the iterative
refinement Gram-Schmidt method and so on. Only the convergence is decided
to be set 10~12 in order to compare with our library.

260-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

(a) R=1.0

Table 1. The results for problem 1

SR2201 (b) i?=1.5 SR2201

PE | 81 16 321 64 128 PE | 8| 16 321 64 128

No auto-tuning No auto-tuning

iter. 43 43 43 43 43 iter. 93 93 93 93 93

time 49.6 36.7 25.0 20.9 22.0 time 101.2 85.5 56.7 45.7 44.3

Auto-tuning Auto-tuning

iter. 18 19 19 19 20 iter. 50 93 93 93 93

time 40.5 24.0 14.3 8.3 5.3 time. 72.5 29.1 16.6 9.2 5.7

unro. N(L3) N(L3) N(3,3) N(3,3) P(3,3) unro. N(1.3) N(l,3) N(3,3) N(3,3) N(3,3)

com. Send Send Irecv Irecv Send com. Send Send Irecv Send Send

orth. MGS MGS CGS CGS CGS orth. MGS MGS CGS CGS CGS

prec. BILL" BILL BILL BILL BILL prec. BILU None None None None

PETSc PETSc

iter. 20 20 21 21 21 iter. 55 56 57 58

time 93.1 45.9 24.5 11.9 6.0 time fail. 148.0 75.5 38.2 19.7

(c) R=2.0 SR2201 (d) Ä=1.0 SR8000

PE | 8| 16 321 64 128 IP | 8| 16 321 64 128

No auto-tuning No auto-tuning

iter. 337 323 323 323 323 iter. 43 43 43 43 43
time 353.3 277.6 186.9 153.9 143.9 time 25.3 19.0 20.4 20.0 21.0

Auto-tuning Auto-tuning
iter. 332 321 321 321 321 iter. 18 19 19 19 20

time 124.9 86.6 45.0 22.8 13.7 time 23.8 12.9 7.6 5.9 5.1

unro. N(1.3) N(1.3) N(3.3) N(3.3) P(3,3) unro. N(L3) P(2,3) N(l,3) N(1.3) N(1.3)

com. Send Send Send Send Send com. Send Send Send Send Irecv

orth. MGS MGS CGS CGS CGS orth. MGS MGS CGS CGS CGS

prec. None None None None None prec. BILL BILL BILL BILL BILL

PETSc
iter.
time fail. fail. fail. fail. fail.

(f) #=2.0 SR8000 (e) i?=1.5 SR8000

IP | 8| 16 321 64 128 IP | 8| 16 32 64 128

No auto-tuning No auto-tuning

iter. 93 93 93 93 93 iter. 323 323 323 323 323

time 53.7 40.0 43.1 41.8 44.4 time 180.3 134.8 145.8 141.4 149.7

Auto-tuning Auto-tuning
iter. 50 93 93 93 93 iter. 321 321 321 321 321

time 38.7 11.9 7.1 5.7 5.7 time 52.2 27.3 14.6 9.6 9.2

unro. N(2.3) P(2,3) N(1.3) N(1.3) N(2.3) unro. N(2.3) N(2.3) N(2.3) N(1.3) N(1.3)
com. Irecv Send Send Send Send com. Irecv Irecv Send Send Irecv

orth. MGS CGS CGS CGS CGS orth. MGS CGS CGS CGS CGS
prec. BILL None None None None prec. None None None None None

■261 -

FEUP - Faculdade de Engenharia da Universidade do Porto

(a) J?=1.0

Table 2. The results for problem 2

SR2201 (b) J?=1.0 SR8000

PE 16 32 64 128
No auto-tuning
iter.
time

21842
1205.7

21842
769.3

21842
540.9

21842
520.3

21842
413.1

Auto- tuning
iter. 1349 1328 1429 1596 1497
time 90.7 44.3 24.3 14.1 7.9
unro. P(3,5) P(3.5) P(2,5) P(2,5) P(2,5)
com. Send Send Send Send Send
orth. CGS CGS CGS CGS CGS
prec. BILü BILÜ BILU BILU BILU
PETSc
iter.
time

2614
576.0

2049
219.3

2913
153.7

3213
81.0

3934
57.0

IP 16 32 64 128
No auto-tuning
iter.
time

21842
499.7

21842
332.5

21842
278.3

21842
225.8

21842
218.5

Auto- tuning
iter. 1349 1328 1429 1596 1497
time 45.8 23.6 12.3 7.6 4.5
unro. P(l,5) P(1.5) P(1.5) P(2.5) N(l,5)
com. Send Send Send Send Send
orth. CGS CGS CGS CGS CGS
prec. BILU BILU BILU BILU BILU

(a) i?=1.0

Table 3. The results for problem 3

SR2201 (b) i?=100.0 SR2201

PE 16 32 64 128
No auto-tuning
iter.
time

1265
250.6 149.4

1265
98.9

1265
90.8

1265
80.9

Auto-tuning
iter. 288 300 417 417 417
time 81.9 42.5 12.5 7.3 4.7
unro. P(2,7) P(2,7) P(1.7) P(1.7) P(U7)
com. Isend Isend Isend Isend Isend
orth. MGS CGS CGS CGS CGS
prec. BILU BILU I + B I + B I + B
PETSc
iter.
time

236
182.2

254
96.9

343
67.0

465
44.2

538
25.2

(c) i?=1.0 SR8801

IP 16 32 64 128
No auto-tuning
iter.
time

1265
111.4

1265
66.4

1265
42.0

1265
31.5

1265
27.6

Auto-tuning
iter. 288 300 417 417 417
time 43.9 23.5 6.8 4.8 4.4
unro. P(U7) P(U7) P(l,7) P(U7) P(1.7)
com. Irecv Isend Isend Irecv Irecv
orth. CGS CGS CGS CGS CGS
prec. BILU BILU I + B I + B I + B

PE 16 32 64 128
No auto-tuning
iter.
time

626
124.2

626
72.1

626
50.9

626
44.7

626
39.3

Auto-tuning
iter. 176 199 207 306 272
time 45.7 25.3 13.3 11.3 4.3
unro. P(2,7) P(U7) P(2.7) P(1.7) P(1.7)
com. Isend Isend Isend Irecv Isend
orth. MGS CGS CGS CGS CGS
prec. BILU BILU BILU BILU BILU
PETSc
iter.
time

203
156.8

262
100.6

331
65.6

310
29.7

370
17.1

(d) /?=100.0 SR8801

IP 16 32 64 128
No auto-tuning
iter.
time

598
53.1 31.6

598
20.0

598
15.0

598
13.1

Auto- tuning
it er. 176 199 207 306 272
time 24.7 14.0 7.8 7.1 3.8
unro. P(1.7) P(1.7) P(U7) P(1.7) P(1.7)
com. Irecv Irecv Isend Irecv Irecv
orth. CGS CGS CGS CGS CGS
prec. BILU BILU BILU BILU BILL"

•262-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Comparison with no auto-tuning and auto-tuning If the problem size
is large, the execution time of auto-tuning is relatively smaller as compared to
the total execution time. Tables 1-3 show that auto-tuning method works very
well.

Unrolling type In problem 1. non-prefetch code is selected as the unrolling
type. In the other problems, prefetch code is selected. In problem 1, our library
often selects the code of 3-unrolled outer loop and 3-unrolled inner loop be-
cause loop size is small. In problem 3, it often selects no expanded code for the
outer loop. These results mean that auto-tuning behavior depends on machine
architectures and compilers.

Communication type Since the nonzero elements of a coefficient matrix
A was located at near diagonal intensively in all problems, the communication
table usage was selected. In the problems 1 and 2, since communication data
size was small, the method using MPLSend and MPI Jtecv in pairs was selected
so often. In the problem 3, since communication data size was large, the method
using MPIJsend and MPIJrecv in pairs was selected.

Orthogonalization type If the number of PEs became large, the selected
method was changed from the MGS into the CGS. However the number of PEs
where the changes happen is different in each problem. For example it changed
into the CGS for 32 PEs in problem 1. for 8 PEs in problem 2. and for 16 PEs
in problem 3.

Preconditioning type In many cases, BILU was selected as preconditioner.
Table 3 shows that I + B is included in the selected method. Because when the
number of PEs is large, preconditioning effect of using BILU is small. On the
other hand, preconditioning with I + B is invariable and it has nothing to do
with the change of the number of PEs.

Comparison to the PETSc In the Tables 1 (b) and 1 (c). the PETSc
failed to converge. In this case, users have to set parameters suitably. On the
whole, our library is approximately four times as fast as the PETSc library.

Scalability The execution time is reduced with the number of PEs. Speed-
ups for some problems are shown in Figure 7.

5 Conclusion

Selecting optimal codes to get high performance is very important. It brings
not only effective utilization of computer resource but also highly user friendly
library.

How we can get high performance without setting parameters in detail will
be the center of public interest.

Our library is open source and available on-line from out project home page
at http://www.hints.org/. Evaluation on the other parallel machines are part of
the future work.

- 263 ■

FEUP - Faculdade de Engenharia da Universidade do Porto

1000-

£100

-V~3

Noauto-1uning(SR2201) -K-" ^.^
PETSc(SR2201) -*■ • --

Au10-1uning(SR2201) ■ +
No aulo-1umng(SR8000) -r>

Auto-tuning[SR8000) -m-]

16 32
Number of PEs

(a) Problem 2. R=1.0

1000

5100

No auto-tuninglSR&Ol)-K-
PETSCISR2201) -*-

Auto-tuning(SR2201) • +
No auto-tuning(SR8000) -t>

Auto-tuning(SR8000) -»-

16 32 64
Number of PEs

(b) Problem 3, R=1.0

Fig. 7. Speed-ups for some problems

Acknowledgments

The authors are much obliged to Dr. Aad van der Steen at the Utrecht University
for giving us useful comments in this paper. This research is partly supported
by Grant-in-Aid for Scientific Research on Priority Areas "Discovery Science"
from the Ministry of Education, Science and Culture. Japan.

References

1. J.J.Dongarra. I.S.Duff. D.C.Sorensen. H.A.van der Vorst: Numerical Linear Alge-
bra for High-Performance Computers. SIAM (1998).

2. Y.Saad: Iterative Methods for Sparse Linear Systems. PWS Publishing Company
(1996).

3. H.Kuroda. T.Katagiri, Y.Tsukuda. Y.Kanada: Constructing Automatically Tuned
Parallel Numerical Calculation Library — A Case of Symmetric Sparse Linear
Equations Solver —. Proc. 57th National Convention 1PSJ. No.l. pp.1-10 - 1-11
(1998) in Japanese.

4. S.Balay. W.D.Gropp, L.C.McInnes, B.F.Smith: PETSc 2.0 Users Manual. ANL-
95/11 - Revision 2.0.24. Argonne National Laboratory (1999).

5. N. Tsuno. T. Nodera: The Speedup of the GMRES(?n) Method Using the Early
Restarting Procedure. Trans.IPS.Japan, Vol.40.No.4,pp.1760-1773 (1998) in
Japanese.

6. H. Kuroda. Y. Kanada: Performance of Automatically Tuned Parallel Sparse Lin-
ear Equations Solver. IPSJ SIG Notes 99-HPC-76-3: pp. 13-18 (1998) in Japanese.

7. O.G.Johnson. C.A.Micchelli. G.Paul: Polynomial Preconditioners for Conjugate
Gradient Calculations. SIAM J. Numer. Anal.. Vol.20.No.2 (1983).

8. J.S.Kowalik. S.P.Kumar: An Efficient Parallel Block Conjugate Gradient Method
for Linear Equations. Proc. 1982 Int. Con}. Par. Proc.. pp. 47-52 (1982).

■264-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

A Methodology for Automatically Tuned
Parallel Tridiagonalization on Distributed

Memory Vector-Parallel Machines

Takahiro Katagiri12 *, Hisayasu Kuroda1, and Yasumasa Kanada3

1
 Department of Information Science. Graduate School of Science,

The University of Tokyo
2 Research Fellow of the Japan Society for the Promotion of Science

3 Computer Centre Division. Information Technology Center,
The University of Tokyo

2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8658, JAPAN
Phone: +81-3-5841-2736, FAX: +81-3-3814-2731

{katagiri, kuroda, kanada}®pi.cc.u-tokyo.ac.jp

Abstract. In this paper, we describe an auto-tuning methodology for
the parallel tridiagonalization to attain high performance. By searching
the optimal set of three parameters for the performance, a highly efficient
routine can be obtained automatically. Evaluation of the methodology
on the distributed memory parallel machines, the HITACHI SR2201 and
HITACHI SR8000. has been provided. The experimental results show
1.3-1.8 times speed-up to a not auto-tuned routine which was specified
with reasonable parameters, and the ratios increased for growing problem
sizes. Comparison between the execution time of our routine with that
of the ScaLAPACK's routine shows that our auto-tuned routine is faster

in manv cases.

1 Introduction

Tuning computational kernels is time-consuming work. We still have to use sev-
eral techniques to attain high performance. To avoid the tuning work, many
linear algebra programs are constructing by using vendor-tuned BLAS (Basic
Linear Algebra Subprograms) routines. The BLAS routines give us high effi-
ciency if the BLAS routines were implemented optimally. However, if the BLAS
routines were implemented with low efficiency, the performance will be poor.
Solution for such implementation problem for BLAS is to use auto-tuning soft-
ware for BLAS, such as PHiPAC [1] or ATLAS [11]. We call these software as
auto-tuning software for general usage.

On the other hand, tuning software automatically that does not or can not
use BLAS is hard. Accordingly, every piece of software that can be tuned au-
tomatically has a special auto-tuning facility. For example. FFTW [4] for the

Candidate to the Best Student Paper Award

-265-

FEUP - Faculdade de Engenharia da Universidade do Porto

discrete Fourier transformation, and the auto-tuning libraries [9] for sparse lin-
ear equation solvers. We call these software packages as auto-tuning software
for dedicated usage. This paper includes that the report of the development of
such auto-tuning software for dedicated usage. The reasons for this report are
as follows:

1. Presently, auto-tuning software for parallel processing is not available.
2. We believe that an auto-tuning facility should be contained in each package.

As for reason 2, if the auto-tuning facility is separated from the package, users
will be in trouble to attain high performance, because they have to install auto-
tuning software into their environments separately. In addition, the time needed
for auto-tuning may be enormous because it may tune even non-relevant sub-
routines (consider the tuning time of all BLAS subroutines.) Hence, our routine
contains this auto-tuning facility.

This paper is organized as follows. Description of our parallel dense eigen-
solver in Section 2. Section 3 is about the parameters of auto-tuning, and how
to search for the optimal parameters. In Section 4. we show the results of the
auto-tuned parameters and execution time of our routines using the auto-tuning
methodology on the HITACHI SR2201 and HITACHI SR8000. The result of the
SR2201 includes a comparison with the ScaLAPACK routine. Finally. Section 5
gives the conclusion of this paper.

2 Dense symmetric eigensolver

2.1 Entire process

Our eigensolver can perform the following eigendecomposition:

A = XAX~1, (1)

where A €]R"xn is a symmetric dense matrix, A 6 Rnxn is a diagonal matrix
which contains eigenvalues A,- 6 IR, i = 1,2 n as the 7-th diagonal elements,
and A' £ IR"X" is a matrix which contains eigenvectors ,r, £ IRn as the ?-th
row vectors, where n is problem size. In our eigensolver, the decomposition (1)
is performed by using a well-known method, the Householder-bisection method.
To perform the Householder-bisection method, the following four processes are
needed.

1. Tridiagonalization by the Householder method: T = QAQ.
2. Eigenvalues of the tridiagonal matrix T are calculated by using the bisection

method.
3. By using the inverse-iteration method, eigenvectors of the tridiagonal matrix

T are calculated.
(The processes 2 and 3 yield the eigendecomposition T = YAY~l.)

4. Reconstructing eigenvalues for the matrix A : X = QY.

- 266 ■

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Concerning the above four processes, the processes 1 and 4 can affect the whole
performance if we need no orthogonalization in process 3. Process 4 depends on
the data distribution of the matrices Q and Y [5]. For this reason, determining
the optimal parallelization of process 4 is hard, and hence, the parallelization has
not been treated in this paper. Next section describes how to parallelize process

1.

2.2 Householder tridiagonalization

Consider the following transformation: A{1) = A to tridiagonal form A(n~2\
where A(k) is defined as the fr-th iteration of the matrix A. This transformation

is denoted by H^{x) = H{k)(Al
k
k^ik), where 4-,U is a row vector of A which is

constructed by the A-th row and from the A-th to the n-th columns in the A-th
iteration. By substituting H{k) = I - auuT for H{k) {x) in the k + 1-th iteration,
the following equations are derived:

4(fr+l) _ Jj(k)A(k)jj(k)

= A{V - aA^uuT - auuTA^ + o?uuTA^m>T

— .4(fc) - xvT - uyT + auuTxuT

— A^ - uyT + U/JV
T
 - xuT

= A{k)-u{yT-iJiiT)-xuT.. (2)

where

X = Q#»U, yT = auTA^\ ß = avTx. (3)

Here a.fj e JR., and u.x.y £ IR". As matrix A is symmetric, x = yT, and we
obtain the following formula:

A(k+i) = A(k) _ v{xT _ ^T) _ XUT^ (4)

Note that to execute the k-th iteration, the column vector Ak-.n.k from the partial
matrix Ak:n,k:n is needed.

2.3 Parallel implementation of the Householder tridiagonalization

Let p be the number of processor elements (PEs). The objective matrix A is
distributed by r x q 2-D grid distribution, called grid-wise distribution (Cyclic.
Cyclic), where r x q = p. The grid-wise distribution (Cyclic. Cyclic) distributes
the elements of A to the following PEs:

Qjj t—7 r(i mod r, j mod q)' \ /

where the P[idxMy)- M-r = 0.1.....r - 1, idy = 0.1 q- 1) means the PE
identification number on the 2-D grid distribution. We do not support block-
cyclic distribution because the block-cyclic distribution causes poor load balance
when n/p is small.

■267-

FEUP - Faculdade de Engenharia da Universidade do Porto

c Pmyidx.myidy owns row set 77 and
c column set F of n x n matrix A.

<1> do k=\, 71-2

(2) if (A- € n then

(3) broadcast(A^\) to
L- PEs sharing rows 77

<4> else

(5) receive(-4jjk)

(6) endif

("> computation of (1/77, a)

(8) if (I have diagonal elements of .4)
k then

(9) broadcast (tin) to
k PEs sharing columns F
(10) else

(11) receive(uj-)
(12) endif
c computation of x = aA^ 'u
(13) do j = /.\ 71

(14) if (j G F)xn =xn + a A^\ v3

k endif
(15) enddo
(16) global summation of xn to PEs
k sharing rows 77

(IT) if (I have diagonal elements of .4)
k then
(18) broadcast(xn) to
k PEs sharing columns r
(19) else
(20) receive(xr)
(21) endif
c computation of /J = at/ x
(22) do ji=A\ 7i
(23) U = aunxn enddo
(24) global summation of /./ to
k PEs sharing rows 77
c computation of
c A(^)=AW_.u{xT_^uT)_xuT

(25) do j—k. 7i
(26) do i=k. n

<27) if (?' e 77 .and. ?' G D then

(28) update .4[*+1) =

k Aü ~ v,- (\J - TU'J) - Xl t-r
(29) endif enddo enddo
c remove k from active columns
c and rows
(30) if (k £ F) F = r - {/,-} endif
(31) if (k e 77) 77 = 77 - U) endif
(32) enddo

Fig. 1. Parallel algorithm for the tridiagonalization (the (Cyclic, Cyclic) grid-wise dis-
tribution).

We already developed the parallel tridiagonalization and Hessenberg reduc-
tion routines [8] by the Householder transformation. Figure 1 shows our parallel
tridiagonalization algorithm. The routine of Figure 1 reduces communication and
broadcast times for vector reduction to a ratio of 1/^/p. The same idea appears
in [3.6.5]. Symmetry of the matrix A was not used in the algorithm of Figure
1. and hence, the algorithm has the computational complexity of 8??3/3. while
the algorithm using symmetry has 47i3/3. This is because, the algorithm based
on the symmetry causes complex data accesses, and the complex data accesses
prevent easy parallel implementation.

Figure 1 gives a conclusion that implementations of the following three op-
erations affect the total performance.

1. The global summations of the lines (7). (16). and (24).
2. The matrix-vector product of the lines (13)—(15).
3. The process to update the matrix A of the lines (25)-(29).

These three operations are the basic operations for parallel tridiagonalization.
and the system will tune the three basic operations automatically in our auto-
tuning process.

268-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

3 Method for searching parameters

In this section, the method of tuning the three basic operations automatically is
described. Hereafter, we use MPI (Message Passing Interface) as the communi-
cation library.

3.1 Parameter for the global summations

To perform the global summations, the following two implementations were se-
lected.

1. A routine based on the binary tree-structured communication, or
2. The MPI.ALLREDUCE function on MPI.

It depends on the implementation of MPI functions which implementation has
the higher performance. Hence, measuring their real performance is necessary to
select the best implementation. For that reason, our auto-tuning routine has a
parameter for the above two implementations.

3.2 Parameter for the matrix-vector product

To perform the parallel matrix-vector product {x = aA{k)u) at high perfor-
mance, the size of the stride for loop unrolling must be selected. The size of the
stride depends on the machine architectures, operating systems, and compilers
we use. Therefore, selecting the optimal number of stride without measuring its
real execution time is hard.

For example, a three-stride unrolled routine on the matrix-vector product
are shown, where the value of ilocal_length_x can be divided by 3 to simplify
the explanation.

- m = ilocal_length_x/3

j = 1
do k=l, m

dtl = O.OdO
dt2 = O.OdO
dt3 = O.OdO
do i=l, ilocal_length_y

du_y = u_y(i)
ix = init_x+i
iy = init_y+j
dtl = dtl + A(ix, iy) * du_y
dt2 = dt2 + A(ix, iy+1) * du_y
dt3 = dt3 + A(ix, iy+2) * du_y

enddo
x_k(j) = dtl * al
x_k(j+l) = dt2 * al
x_k(j+2) = dt3 * al

-269-

FEUP - Faculdade de Engenharia da Universidade do Porto

3=3+3
enddo

This example shows a case of the loop unrolling for the outer-loop k only. We
can unroll the inner-loop i or both of the loops k and i. Current target ma-
chines are vector architecture machines as explained in the Section 4. Then, we
only unrolled the outer-loop, since unrolling the inner-loop shortens the loop
length which is not good for vector architecture machines. For the auto-tuning
parameter, we take the size of the stride.

3.3 Parameter for the process to update

As in the case of the matrix-vector product, it is necessary to set the size of the
stride for unrolling in the process to update (A{k+l) = A(k) -u(.rT

~/JU
T

)-XU
T

).

For example, a two-stride unrolled routine on the process to update is shown,
where the value of ilocal_length_x also can be divided by 2 to simplify the
explanation.

m = ilocal_length_x/2

do k=l, m
j = 2*(k-l)+l
dtul = u_x(j)
dtu2 = u_x(j+l)
dtrl = mu * dtul - x_k(j)
dtr2 = mu * dtu2 - x_k(j+l)
do i=l, ilocal_length_y

du_y = u_y(i)
dx_k = x_k(i)
ix = init_x+i
iy = init_y+j
A(ix, iy) = A(ix, iy) + du_y * dtrl ■ - dx_k * dtul
A(ix, iy+1) = A(ix, iy+1) + du_y * dtr2 ■ - dx_k * dtu2

enddo
enddo

For the same reason as for the matrix-vector product, we only unroll the outer
loop k. The auto-tuning parameter for the process to update is the stride for
unrolling.

3.4 How to search these parameters

Let the parameters for the global summation, the matrix-vector product, and
the process to update be denoted as Comm.Type. Mat-Vec. and Updating, respec-
tively. The Comm.Type can take on the values { Tree. MPI_ALLREDUCE }. where
Tree means a routine based on binary tree-structured communication, and the
MPI_ALLREDUCE means communication by a MPI function. The Mat-Vec can
have the values { None. 2, 3. 4. 5. 6. 8. 16 }. where the numbers show the size

■270-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

of the stride for unrolling. The Updating can be chosen as { None, 2. 3, 4. 5. 6.
8, 16 } like in the Mat-Vec case.

Following is the description of how to search for optimal parameters. We first
set the following default parameter values:

Comm.Type = Tree, Mat-Vec = 8, Updating = 6. (6)

Secondly, we searched the optimal parameters by using the above initial
parameters. Method for varying the parameters is as follows.

Comm.Type=Tree, Mat-Vec=8, and Updating is varied as { None. 2,
3, 4, 5. 6. 8. 16 }.
Comm.Type=Tree, Mat-Vec is varied as { None, 2, 3, 4, 5, 6, 8, 16 },
and Updating={ the selected value from the process 1 }
Comm.Type is varied as { Tree, MPI_ALLREDUCE }, Mat-Vec={ the
selected value from the process 2 }, and Updating={ the selected
value from the process 1 }.

This method can not find optimal parameters if there is a dependency among
the three parameters. However, the basic operations we mentioned are separated
physically (see Figure 1), hence, there is no dependency in the three parameters.
Therefore, we may be confident that our method can find an almost optimal set
of parameters.

As for the problem sizes, n = 100 is specified as the initial values. The
problem size is increased by using the stride of 100 while problem size n is under
1000. the stride of 1000 while 1000 < n < 10000. and the stride of 10000 while
n is over 10000. This increment is used in each searching process.

4 Experimental results

We implemented the auto-tuning methodology on the HITACHI SR2201 and
HITACHI SR8000.

The HITACHI SR2201 system is a distributed memory, message-passing par-
allel machine of the MIMD class. It is composed of 1024 PEs, each having 256
Megabytes of main memory, interconnected via a communication network hav-
ing the topology of a three-dimensional hyper-crossbar. The peak interprocessor
communications bandwidth is 300 Mbytes/s in each direction. We used the HI-
TACHI Optimized Fortran90 V02-06-/D compiler, and the compile option we
used was -rdma -W0. 'OPT(0(SS))\

The HITACHI SR8000 system is a distributed memory, message-passing par-
allel machine of the MIMD class like the HITACHI SR2201. It is composed of
128 nodes, each having 8 Instruction Processors (IPs). 8 Gigabytes of main
memory, interconnected via a communication network having the topology of
a three-dimensional hyper-crossbar. The peak interprocessor communications
bandwidth is 1 Gbytes/s in each direction. The SR8000 system has two types

■271

FEUP - Faculdade de Engenharia da Universidade do Porto

of parallel environments, named inner-node parallel processing and inter-node
parallel processing. The inner-node parallel processing is so-called parallel pro-
cessing in a sheard memory parallel machine, and there is no interprocessor com-
munication. On the other hand, the inter-node parallel processing is like parallel
processing as a distributed memory parallel machine, and it can perform inter-
processor communications. We used the HITACHI Optimized Fortran90 V01-00
compiler, and compile option we used was -WO, 'OPT(O(SS)).mp(p(0))' in the
inner-node parallel processing, and -W0.'OPT(O(SS)).mp(p(4))' in the inter-
node parallel processing.

The communication library used for the SR2201 and SR8000 was MPI. Both
machines have vector PEs in a sense, i.e. the Pseudo Vector Processor [2]. There-
fore, we can regard both machines as vector-parallel machines.

We implemented our tridiagonalization routine by using dedicated subrou-
tines which satisfy functions for the three parameters. For instance, our routine
contains a two-stride unrolled matrix-vector product subroutine, or a three-stride
unrolled subroutine to update, and so on. By using such subroutines, we can spec-
ify the arbitrary parameters. Note that our software does not generate Fortran
codes dynamically in this experiments. All auto-tuning was done at run time.

4.1 The results of the SR2201

Results of auto-tuning Table 1 shows parameters auto-tuned on the SR2201.
The tuning time depended on the number of PEs, and the CPU elapsed time

Table 1. The auto-tuned parameters on the SR2201.

(a) Case of 4 PEs (b) Case of 32 PEs
Size Comm.Type Mat-Vec Updating Size Comm.Type Mat-Vec Updating
100 MPI. .ALLREDUCE 6 3 100 MPI.ALLREDUCE 6 16
200 Tree 8 4 200 MPI.ALLREDUCE 4 5
300 Tree 8 6 300 MPI.ALLREDUCE 4 4
400 Tree 5 2 400 MPI .ALLREDUCE 6 3
500 Tree 8 5 500 MPI_ALLREDUCE 6 4
600 Tree 5 6 600 MPI_ALLREDUCE 6 4
700 Tree 8 6 700 MPI_ALLREDUCE 8 3
800 Tree 3 3 800 MPI.ALLREDUCE 5 3
900 Tree 8 4 900 MPI_ALLREDUCE 4 3

1000 Tree 5 5 1000 MPI.ALLREDUCE •5 3
2000 Tree 5 6 2000 MPI.ALLREDUCE 5 5
3000 Tree 5 5 3000 MPI.ALLREDUCE 8 5
4000 Tree 3 3 4000 MPI.ALLREDUCE 5 5
5000 MPI. .ALLREDUCE 5 5 5000 MPI.ALLREDUCE 8 5
6000 MPI. .ALLREDUCE 5 5 6000 MPI.ALLREDUCE 5 5
7000 MPI. .ALLREDUCE 5 5 7000 MPI.ALLREDUCE 5 5
8000 MPI. .ALLREDUCE 3 2 8000 MPI.ALLREDUCE 3 3

Tuning time 118401 (32.8 Tuning time 15555 (4.3
[Sec] [Hours]) [Sec] [Hours])

■272-

VEC PAR '2000 - 4th International Meeting on Vector and Parallel Processing

was about 32 hours at most. The tendency of the tuned parameter of Comm. Type
were different between 4 and 32 PEs, and the tuned parameters of Mat-Vec and
Updating was different on every problem size. From these facts, we expected
that the routine is effective in speeding up.

Comparison to ScaLAPACK To evaluate execution time of the tridiagonal-
ization routine (hereafter TRD). we used the HITACHI optimized ScaLAPACK
version 1.2 [7]. Its communication library used was PVM, and PBLAS (Paral-
lel BLAS) which is the computational kernel for ScaLAPACK and is optimized
by HITACHI limited. ScaLAPACK's tridiagonalization routine (hereafter SLP
TRD) is implemented by using block-cyclic distribution, a blocked algorithm,
and symmetry of the matrix [10]. Because of using a blocked algorithm, the size
of blocking {BL) can greatly affect the performance of ScaLAPACK. According
to [7], if the problem size n is less than 4000, the desirable BL is 60, and if n
is over 4000, the desirable BL is 100 on the SR2201. Considering these recom-
mended values, we evaluated the performance of the SLP TRD routines with
BL - {40,60,80.100.120} to find which BL gives the best performance. In
[7] it is shown that y/p x yfp is the best layout for the PE grid. We measured
execution time in the PE grid for a large number of PEs. When the number of
PEs is small, such as 4, 32, and 64, we measured time in all combinations for
the PE grid to find which PE grid gives the best performance.

Table 2 shows execution time of the TRDl (not auto-tuned). TRD2 (auto-
tuned), and SLP TRD. Reasonable parameters of Comm.Type = Tree. Mat-Vec
= 8. and Updating = 6 are specified in the TRDl (not auto-tuned). Note that
the optimal BL size and PE grids for the SLP TRD are used, and the values are
included in Table 2.

Table 2. Execution time on the SR2201. Unit is in second.

(a)C :ase of 4 PEs (b) Case of 32 PEs

Size

100

SLP TRD

(Grid,BL)

0.02
(1x4. 100)

TRDl

(not AT)

0.056
(2x2)

TRD2

(AT)

0.056
(2x2)

TRDl

/TRD2

1.00

Size

100

SLP TRD

(Grid. BL)

0.09
(4x8. 100)

TRDl

(not AT)

0.108
(4x8)

TRD2

(AT)

0.106

(4x8)

TRDl

/TRD2

1.01

200 0.48
(1x4. 100)

0.131
(2x2)

0.133
(2x2)

0.98 200 0.87
(2x16, 100)

0.250
(4x8)

0.240
(4x8)

1.04

400 1.73
(1x4. 40)

0.435
(2x2)

0.475
(2x2)

0.91 400 2.33
(2x16. 60)

0.514
(4x8)

0.516
(4x8)

0.99

800 6.01
(1x4, 40)

3.732
(2x2)

2.454
(2x2)

1.5 800 6.27
(2x16. 60)

1.207
(4x8)

1.228
(4x8)

0.98

1000 9.32
(2x2. 40)

3.817
(2x2)

3.785
(2x2)

1.0 1000 8.28
(2x16. 60)

1.654
(4x8)

1.687
(4x8)

0.98

2000 41.90
(2x2. 40)

28.165
(2x2)

26.937
(2x2)

1.0 2000 22.18
(4x8, 40)

5.930
(4x8)

5.886
(4x8)

1.00

4000 231.10
(2x2. 40)

411.666
(2x2)

242.010
(2x2)

1.7 4000 72.74
(4x8, 40)

32.961
(4x8)

32.124
(4x8)

1.02

8000 1422.69
(2x2, 100)

3589.175
(2x2)

1962.512
(2x2)

1.8 8000 313.25
(4x8. 40)

427.267
(4x8)

254.937
(4x8)

1.6

■273-

FEUP - Faculdade de Engenharia da Vniversidade do Porto

Table 2 shows that we obtained 1.6-1.8 times speed-ups with respect to the
TRD1 (not auto-tuned) when problem sizes were large, such as 4000. 8000. As
for the SLP TRD execution time, we find that when problem size is small, the
TRD was faster than the SLP TRD. On the other hand, when problem sizes per
PE were large, the SLP TRD was faster than the TRD. We consider that this
is explained from the computational complexity of the TRD, since the TRD has
twice computational complexity to the SLP TRD.

Figure 2 shows the execution time of the TRD1 (not auto-tuned), TRD2
(auto-tuned), and SLP TRD in n = 2000 and 8000 cases. Note that the execution
time of the SLP TRD in Figure 2 was specified the optimal BL and the PE grid.
From Figure 2, we can conclude that when n — 2000. the TRD is always faster

50

45

40

1 35
o
£ 30 </>
£ 25

I»
F 15

10

5

0

n=2000 ...iJ

5RZ201

^...•-••'""ScaUAPACK •■

...K

A TRD1 (not auto-tuned) '..

TRD2 (auto-tuned) -.

giooo

Fig. 2

(auto-tuned)

100 200 300
Number of PEs

400 500512 4 10 100 10001024
Number of PEs

(a) Case of n = 2000 (b) Case of " = 8000

Execution time for the SLP TRD and TRD in the tridiagonalization (SR2201).

than the SLP TRD. and the speed-up ratios are about 2-6 times. On the other
hand, when n = 8000, the execution speed of the TRD was slower than the SLP
TRD when the number of PEs was under 64, however, when over 64, the TRDs
became faster than the SLP TRD. The effect of auto-tuning was high when the
number of PEs was under 64.

From the experimental results, we conclude that our methodology is useful,
especially, when the problem sizes are large. In addition, the TRD is fast when
the problem sizes are small on the SR2201.

The execution time in every auto-tuning process To evaluate the auto-
tuning process in detail, we analyzed the execution time in each of our auto-
tuning process. Figure 3 shows the time when the problem size was 8000.

From Figure 3 (a), we see that the specified initial parameters (Comm.Type
= Tree. Mat-Vec = 8, Updating = 6) were worse than the case of Figure 3 (b).
because the 6-stride of the process 1 (Updating) and the 8-stride of the process
2 (Mat-Vec) in Figure 3 (a) were not optimal parameters, and the change of
the elapsed time when varying these strides was high. Hence, we conclude that
the initial parameters were not good for the case of 4 PEs. and this caused

274-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

1
CTree)

4 6 8 10 12
J.REDUCE)

The stride ol unrolling

(a) Case of p = 4

12 4 6 8 10
(Tree) (MPLALLREDUCE)

The stride of unrolling

(b) Case of p = 64

Fig. 3. The execution time in every auto-tuning process. (SR'2201, n = 8000)

high speed-up ratios. On the other hand, Figure 3 (b) shows that the initial
parameters we specified were almost optimal values. For this reason, we conclude
that we did not obtain better speed-ups on 64 PEs than the speed-ups on 4PEs
on the SR2201.

4.2 The results of SR8000

Results of auto-tuning and execution time Table 3 shows auto-tuned pa-
rameters on the SR8000. From Table 3. the tendency of tuned parameters was
found to be different between the inner-node parallel and inter-node parallel
environments. From this fact, we could also find the cases for the speed up.
Table 4 shows execution time of the TRD1 (not auto-tuned) and TRD2 (auto-
tuned). From Table 4, we obtained about 1.1-1.3 times speed-ups with respect
to the TRD1 (not auto-tuned). The effect became stronger when problem size
increased. So. the authors conclude that our auto-tuning methodology is also
useful on the SR8000.

5 Conclusion

The authors have implemented and evaluated a tridiagonalization routine by
using an auto-tuning methodology. Selecting suitable implementations for the
global summation, the matrix-vector product, and the process to update on
the parallel tridiagonalization is the auto-tuning methodology we mentioned in
this paper, and the methodology is quite simple. Even though we used this
quite simple methodology, we could obtain about 1.1-1.8 times speed-ups with
respect to the routine for which the reasonable parameters in the SR2201 and
the SR8000 were specified. From these results, the authors concluded that such
an auto-tuning methodology is an effective technique.

The auto-tuning methodology is for vector-parallel machines. The auto-tuning
methodology for the RISC based parallel machines, such as selecting blocking
factors in blocked algorithms, and evaluation on the RISC based parallel ma-
chines are parts of the future work.

■275-

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 3. The auto-tuned parameters on the SR8000.

(a) Case of 1 Node (8 IPs)
(SR8000. inner-node parallel,

sheard memory)

(b) Case of 4 Nodes (32 IPs)
(SR8000, inter-node parallel.

distributed memory)

Size Comm.Type Mat-Vec Updating Size Comm.Type Mat-Vec Updating

100 MPI.ALLREDUCE
200 MPI_ALLREDUCE
300 MPI.ALLREDUCE
400 MPI.ALLREDUCE
500 MPI.ALLREDUCE
600 MPI.ALLREDUCE
700 MPI.ALLREDUCE
800 MPI.ALLREDUCE
900 MPI.ALLREDUCE

1000 MPI.ALLREDUCE
2000 MPI.ALLREDUCE
3000 MPI.ALLREDUCE
4000 MPI.ALLREDUCE
5000 MPI.ALLREDUCE
6000 MPI.ALLREDUCE
7000 MPI.ALLREDUCE
8000 MPI.ALLREDUCE

None None 100 Tree None 2

4 None 200 Tree None None

8 None 300 Tree None 2
4 None 400 Tree None None

5 None 500 Tree None None

6 3 600 Tree None None

6 None 700 Tree None None

6 3 800 Tree 4 None

6 None 900 Tree 4 None

6 3 1000 Tree 6 None

6 None 2000 MPI. .ALLREDUCE 6 4

6 None 3000 MPI. .ALLREDUCE 6 4

6 None 4000 MPI. .ALLREDUCE 4 16
4 None 5000 MPI .ALLREDUCE 4 16

4 None 6000 MPI .ALLREDUCE 4 16
6 None 7000 MPI .ALLREDUCE 6 16
6 None 8000 MPI .ALLREDUCE 6 16

Tuning time 16325 (4.5
[Sec] [Hours])

Tuning time 4443
[Sec]

(1.2
[Hours])

Table 4. Execution time on the SR8000. Unit is in second.

(a) Case of 1 Node (8 IPs)
(SR8000. inner-node parallel,

sheard memorv)

(b) Case of 4 Nodes (32 IPs)
(SR8000. inter-node parallel.

distributed memory)
size

100

TRDl
(not AT)

0.024
(2x4)

TRD2
(AT)
0.022
(2x4)

TRDl
/TRD2

1.09

Size

100

TRDl
(not AT)

0.038
(2x2)

TRD2
(AT)
0.036
(2x2)

TRDl
/TRD2

1.05

200 0.053
(2x4)

0.049
(2x4)

1.08 200 0.077
(2x2)

0.072
(2x2)

1.06

400 0.162
(2x4)

0.145
(2x4)

1.11 400 0.176
(2x2)

0.162
(2x2)

1.08

800 0.678
(2x4)

0.587
(2x4)

1.15 800 0.490
(2x2)

0.450
(2x2)

1.08

1000 1.155
(2x4)

0.988
(2x4)

1.16 1000 0.714
(2x2)

0.648
(2x2)

1.10

2000 7.098
(2x4)

5.595
(2x4)

1.26 2000 2.806
(2x2)

2.345
(2x2)

1.19

4000 50.451
(2x4)

39.263
(2x4)

1.28 4000 14.957
(2x2)

11.392
(2x2)

1.31

8000 389.297
(2x4)

308.307
(2x4)

1.26 8000 102.369
(2x2)

75.398
(2x2)

1.35

-276-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

Acknowledgments

The authors are much obliged to Dr. Aad van der Steen at the Utrecht University
for giving us useful comments in this paper. This research is partly supported
by Grant-in-Aid for Scientific Research on Priority Areas "Discovery Science''
from the Ministry of Education, Science and Culture. Japan.

References

1. J. Bilmes. K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing Matrix Multiply
Using PHiPAC: A Portable, High-performance, ANSI C Coding Methodology. In
Proceedings of International Conference on Supercomputing 97 (Vienna, Austria,
199") 340-347.

2. T. Boku. K. Itakura. H. Nakamura. and K. Nakazawa. CP-PACS: A Massively
Parallel Processor for Large Scale Scientific Calculations. In Proceedings of Inter-
national Conference on Supercomputing 97 (Vienna. Austria, 1997) 108-115.

3. H. Chang. S. Utku, M. Sakama. and D. Rapp. A Parallel Householder Tridiago-
nalization Stratagem Using Scattered Square Decomposition. Parallel Computing
6 (1988) 297-311.

4. M. Frigo. A Fast Fourier Transform Compiler. In Proceedings of the 1999 ACM
SI GPL AN Conference on Programming Language Design and Implementation (At-
lanta, Georgia, 1999) 169-180.

5. B. Hendrickson. E. Jessup, and C. Smith. Toward an Efficient Parallel Eigensolver
for Dense Symmetric Matrices. SIAM J. Sei. Comput. 20(3) (1999) 1132-1154.

6. B. A. Hendrickson and D. E. Womble. The Tours-wrap Mapping for Dense Matrix-
Calculation on Massively Parallel Computers. SIAM Set. Comput. 15(5) (1994)
1201-1226.

7. HITACHI Ltd. Using ScaLAPACK and PBLAS Libraries for the HITACHI
SR2201. Computer Centre News, the University of Tokyo 30(2) (1998) 36-58.
in Japanese.

8. T. Katagiri and Y. Kanada. Performance Evaluation of Householder Method for
the Eigenvalue Problem on Distributed Memory Architecture Parallel Machine.
IPSJ S1G Notes 96-HPC-62 (1996) 111-116. in Japanese.

9. H. Kuroda and Y. Kanada. Performance of Automatically Tuned Parallel Sparse
Linear Equations Solver. IPSJ S1G Notes. 99-HPC-76 (1999) 13-18. in Japanese.

10. K. S. Stanley. Execution Time of Symmetric Eigensolver. Ph.D Thesis. The I ni-
versity of California at Berkeley. 1997.

11. R. C. Whaley and J. J. Dongarra. Automatically Tuned Linear Algebra Software,
ATLAS project, http://www.netlib.org/atlas/index.html.

■277-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

A new Parallel approach to the Toeplitz Inverse
Eigenproblem using Newton-like Methods.

Jesus Peinado1, Antonio M. Vidal2

Departamento de Sistemas Informäticos y Computation
Universidad Politecnica de Valencia. Valencia, 46071, Spain

'jpeinaao@dsic.upv.es (Author in charge of correspondence),
2avidal@dsic.upv.es

Phone :+(34)-6-3877798. Fax:+(34)-6-3877359

Abstract. In this work we show several portable sequential and parallel
algorithms for solving the inverse eigenproblem for Real Symmetric
Toeplitz matrices. The algorithms are based on Newton's method (and
some variations), for solving nonlinear systems. We exploit the structure
and some properties of Toeplitz matrices to reduce the cost, and use Finite
Difference techniques to approximate the Jacobian matrix. With this
approach, the storage cost is considerably reduced, compared with parallel
algorithms proposed by other authors. Furthermore all the algorithms are
efficient in computational cost terms. We have implemented the parallel
algorithms using the parallel numerical linear algebra library
SCALAPACK based on the MPI environment. Experimental results have
been obtained using two different architectures: a shared memory
multiprocessor, the SGI PowerChallenge, and a cluster of Pentium II PC's
connected through a Myrinet network. The algorithms obtained show a
good scalability in most cases.

1 Introduction and objectives

In this work we show several portable sequential and parallel algorithms for solving
the inverse eigenproblem for Real Symmetric Toeplitz (RST) matrices. These matri-
ces appear in several numerical problems in physics and engineering. There are many

-279-

FEUP - Faculdade de Engenharia da Universidade do Porto

references related to solving Toeplitz linear systems, however references related to
the Toeplitz inverse problem are limited. Parallel computing is specially appropriate
due to the high computational cost of solving this problem.
The algorithms presented in this paper are based on Newton's method, (Newton,
Shamanskii and Chord methods, and the Armijo Rule) [9], for solving large scale
general nonlinear systems. We exploit the structure and some properties of the To-
eplitz matrices to reduce the cost. We use finite difference techniques [9] to approxi-
mate the Jacobian Matrix. Our idea is to use as standard a method as possible.
Our approach to solve the problem as a general nonlinear system is different from
other "state of the art" sequential [18] and parallel [3] algorithms. Our algorithms
considerably reduce storage cost, and thus allow us to work with larger problems.
Furthermore, our algorithms are efficient in computational terms.
To carry out the experimental study, we worked with 15 test problems detailed in
[2] [15]. Each problem has a different pattern (spectrum) of eigenvalues. To compare
with other nonlinear system methods we used Powell's method, implemented in the
MINPACK-1 [14] standard package. Powell's method is a robust general purpose
method to solve nonlinear systems.
We implemented all the algorithms using portable standard packages. In the case of
sequential algorithms we used LAPACK [1] numerical linear algebra library. And
for parallel algorithms we used SCALAPACK [4] and BLACS [19] libraries, based
on the parallel MPI [3] environment. All programs have been implemented using C++
language.
Experimental results have been obtained using two different architectures: a shared
memory multiprocessor, the SGI PowerChallenge, and a cluster of Pentium II PC's
connected through a Myrinet [13] network. However other machines could be used
due to the portability of the packages and our code.
In both machines we obtained good results and all the algorithms are scalable. The
scalability of the algorithms is specially good even when working with problems
where the initial size of the scalability test is small.
We want to emphasize the behaviour of the algorithms using the cluster of PC's and
the Myrinet network. This system is a good, cheap alternative to more expensive
systems because the ratio performance/price is higher than when using classical MPP
machines.

2 The problem

Let t = {t0,t],...,tri_l} where f0,*,,...,<„_, are real numbers, and let7Y./) be the real

symmetric Toeplitz (RST) matrix:

We say that t generates T(t), and denote the eigenvalues of T(t) by:

l(t)<XAt)<.<XSt)-

-280-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

The inverse problem [18] for RST matrices can be described as follows:

Given « real numbers A, <A2 <... < An, find an «-vector t such that:

A,(?) = A„l<i<n.

We will call A, < A2 <... < A„ targe/ eigenvalues, and A = [A,, A2,..., An J the target

spectrum.

We will use nonlinear system techniques to find ? = [?„,?,,...,*„_,] where /„,?,,...,?,

are the RST matrix coefficients. Thus, tm is the starting point and we construct an

iterative process which converges to t(l) = [/„"V,"',...,* <0,,-i] . The «-vector f(,)must

fulfill T(tU)) eigenvalues are the target spectrum eigenvalues.

2.1 Newton's Method

We used Newton's method (and some variations) to solve our nonlinear system, be-
cause this method is powerful and it has quadratic local convergence [9]. Newton's
method [9] is based on the following algorithm, where J is the Jacobian Matrix and F
is the function (k is the iteration number):

J{x)p =-F(x), •/(*') eft™,

X :xk+p p, F(x')eSR".

We also used several variations to Newton's method: if we only compute the Jacobian
matrix and factorize in the first iteration, we use the Chord method. If we compute the
Jacobian matrix and factorize in some iterations, this is the Shamanskii method.
These changes reduce the time cost of Newton's method, because far fewer Jacobian
evaluations and factorizations are performed, however convergence is q-linear [9].
This can be showed better if we write the transition from x' to x'"':

Vj =xk -J{xk)'XF{xk)
*s-l

yJ+i = Vj ~ J(*k) F(x) for 1 < j < m -1,

* =yn

-281-

FEUP - Faculdade de Engenharia da Universidade do Porto

Note that m = 1 is Newton's method and m = °° is the Chord method. Other values
of m define the Shamanskii method. These methods are frequently used for very large
problems.
To improve convergence, we used the Armijo rule. The idea is to convert the above
methods from local to global convergence [9]. This improvement allows us to reach
convergence in some cases.

2.2 Adapting Newton's method to the inverse Toeplitz eigenproblem

Newton's method must be characterized for the problem to be solved. We must char-
acterize each step to the inverse Toeplitz eigenproblem:

The starting point (x°): we used two different starting points. Both of them are ex-
perimental and depend on the problem to solve (the target spectrum).

Normalized [3] Lauriefl 1]:
1

t =<
if i = l

V2(«-l)
0 if i*l

orTrench[18]:

1

t.=i
if i is odd

0 if i is even * J"'
.4

V J

The function F(^): is the value of the function at the k iteration.

Let t be the vector that generates T(t).

Let A = [Äi,AJ)...,A:i] the target spectrum, then F(x), *e9T, is defined as

F(x) = eig(T(x))-A.

where

eig(T(x)) = [Xl(x),l2(x),...,Xn(x)]T

The computational cost of computing the eigenvalues of a large matrix is high. We
can exploit here some of the properties of the Toeplitz matrices. If we use Cantoni
and Butler's theorems [5], we can obtain the eigenvalues of the matrix from the ei-
genvalues of two matrices half its size.
The Jacobian matrix J(x*): is the value of the Jacobian matrix at the k iteration. We
must compute it with the forward difference approximation technique:

-282-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

_ \X) —
dxk h

This technique produces a great increase in the time cost, because F(x)has to be
computed once per iteration, and, F(x + fe), j = 1,2...« must be computed once per
column j of the Jacobian matrix. This is the most time consuming step in our algo-
rithms. However, this cost can be alleviated slightly as the entries of the first column
do not have to be computed because they are 1:

eig(T(tw + hei))-eig(T(tin)) _ eig{T{tw)) + h-eig{T{tw)) _ h _ ^

Alternative techniques to construct the Jacobian matrix can be found in [11] and [18],
but those techniques imply the construction and storage of the eigenvectors of an RST
matrix. The use of the difference approximation alleviates the computational and
storage cost of this step.

Storage cost is determined by the costs of computing the eigenvalues, and solving a
linear system. The cost is the same for the three methods: 1) Storing the matrices to
compute F, and 2) Storing the Jacobian matrix and the linear system. The cost of 1
consists of storing two half sized problem matrices, and the cost of 2 is storing one
problem sized matrix.

The linear system: the Jacobian matrix has no special structure or property. We used
the LU solver and forward and backward substitution for solving two triangular sys-
tems [8].

2.3 The sequential algorithm

To carry out the sequential algorithm we used all the techniques explained in the
former section. Furthermore to obtain a code as efficient as possible we used the
linear algebra library LAPACK. The Newton algorithm particularized for the inverse
Toeplitz eigenproblem will be as follows:

The Newton sequential Algorithm (for the Inv. Toeplitz

eigenproblem)

Choose a starting point x°
Compute vector F(x):

v<r-F(x) = eig{T{x)) (* F(x") + A *)

While the stopping criterion has not been reached

-283-

FEUP - Faculdade de Engenharia da Universidade do Porto

Compute Jacobian Matrix J(x):
If column j=l

J(/),=[l5l...l]
r

else
For j=2:n

w <r- F(x" + he.) = eig(T(x" + he.)) (*F(x" + hej) + A *)

* w-v

h

Solve the linear system J(xk)sk = -[F(xk) + A) :

Factorize J(x) = LU

Solve LUs" =-(F(xk) + A) (* F(x") + A *)

Update the iterate x +1 = x +s
Compute vector F(x):

v<r-F(x") = eig(T(xk)) (* F(xk) + A *)

The Chord and Shamanskii Methods have similar algorithms.

The computational cost of the sequential algorithm will depend on the iteration cost.
The algorithm uses routines to: compute the eigenvalues, add two vectors, solve a
linear system, compute vector norms and merge two vectors. The final expression is
as follows:

Newton Chord Shamanskii

/ 4 _ 3 \ 4 3
' n in I n n

+ — + k
K 3 3) 3 ' 3

/ 4 3 \ n n
— + m —

{3 3)

where kK,ks and kc are the respective iterations for Newton's, the Shamanskii and

Chord methods. A more detailed analysis can be found in [15].

Storage cost is the same for the three methods: 1) Storing the matrices to compute F,
and 2) Jacobian matrix and the linear system. The cost of 1 consists of storing two
half sized problem matrices, and the cost of 2 is storing one problem sized matrix:

Cost = 21-1 +n2 =— .

-284-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

3 Parallel algorithm

3.1 How to parallelize the sequential algorithm

To carry out this work, we worked with the SCALAPACK package. We parallelized
the computation of the Jacobian, the solution of linear system, and the updating of the
iterate. All the steps are parallelized to iteration level.

SCALAPACK algorithms work with a 2-D logical mesh and a bidimensional block
cyclic data distribution. Below is a possible distribution of a 9 x 9 Jacobian Matrix,
before computing the LU decomposition, for the case of a 2 x 3 mesh of processors:

0 1 2
0 1 2

J

ii J

21 J

12

22

J

J

17 J 18

27 J 28

J 13 J

y2.3 J

14

24

J

J

19

29

J

J

15 J

25 J

16

26

0 J

J

51 J

61 J

52

62

J

J

57 J 58

67 J 68

7 53 J

7 63 J

54

64

J

J

59

69

J

J

55 J

65 J

56

66

; 91 J 92 J 97 J 98 >93 J 94 J 99 J 95 J 96

1

j

j

31 J

41 J

32

42

J

J

.37 J 38

47 J 48

Jn J

J4) J

34

44

J

J

39

49

J

J

35 J

45 J

36

46

j

j

71 J

81 J

72

82

J

J

77 J 78

87 J 88

Jn J

J 83 J

74

84

J

J

79

89

J

J

75 J

85 J

76

86

-^i

Fig. 1. SCALAPACK block cyclic distribution for the LU algorithm and the right hand side.

A standard SCALAPACK distribution could be as follows: distributing a matrix of Mrows x N
columns, partitioned in MB x NB sized blocks on a 2-D processor mesh with P processors. The
mesh size is Pr row processors by Pc column processors. The (i,j) entry is located on the proc-

essor (pr, pc) as follows:

(Pr, Pc) = [((''-1) div MB) mod P , ((j -1) div NB) mod P]

0<pr<P-\, 0<pc<P-l,

\<i<M, \<j<N.

Analogously on (pr,pc) the entries (i,j) are located:

(i,j) = (x*MB*P+pr*MB + k , y*NB*P +pt*NB + l)

x = 0.
f M ^

KMB*P j
-1 k = \...MB

-285-

FEUP - Faculdade de Engenharia da Universidade do Porto

y = 0..

f N ^

KNB*Pj
-1 l = \...NB

For the right hand side vector we must reference the indexes showing the row entries.

We oriented our algorithms to optimize the computation of Jacobian matrix J, be-
cause it is the most time consuming step. First, we need to apply the forward differ-
ence approximation formula to compute the Jacobian matrix. To do this F(x) must be
replicated in each processor. Therefore F is always computed sequentially in each
processor. As we obtained F(x) before, we only need to compute
F(x + he) with j = 1,2... n. Our suggestion for performing this computation efficiently

is the following:

Each column of processors in the logical mesh provided by the SCALAPACK pack-
age, is in charge of computing a set of columns in the Jacobian Matrix. For example
Fig. 2 shows that, processors (px,p0) must compute the columns 1,2,7,8, processors

{px,P\) must compute the columns 3,4,9 and so on.

0 1 2

0
e

i
2

smpu
1.2

i

")

i

c
3
4

^omp
3,4

i

uteN

k

e
5

ompi

i

1 '
7
8 1 '

9
1 f

6

1 e jmpu
7,? 0 c "ompute^N

9 J e ompi
6

Fig. 2. Computing the Jacobian in parallel.

In addition, the work corresponding to a column of processors is divided among the
processors in that column. Thus, in our example processor (p0,p0) computes

columns 1,2 and processor (P],p0)computes columns 7,8. The same idea is applied

to all the processors. Finally, a local communication between processors must be
carried out in the same column, in order to achieve the adequate ditribution of the
Jacobian matrix.

Once the Jacobian Matrix has been computed, we need to solve the linear system and
update the iterate. For solving the linear system, we used the PDGESV (and some
variations) SCALAPACK routine. The distribution of the elements is shown in Fig. 1.

-286-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

When the system is solved the solution 5 is left on the right hand side vector. Then we
only have to broadcast 5 to all the processors, and update the iterate.

For broadcasting s, we used two BLACS steps:

1. All the first column processors must have the complete sw.

2. Each first column processor sends the complete vector to the processors located in
its same row.

Each step can be performed by calling one routine in BLACS.

With these steps the vector is located in all the processors, and we only have to update
Jc"+"=JC("+5(".

From the point of view of a processor that belongs to the mesh of (Pr, P) processors,

the algorithm must be as follows:

The Newton Parallel Algorithm (for the inv. Toeplitz

eigexiproblem)

Choose x° {* same on all the processors *)
Repeat

Compute F using:
F(x) = eig(T(x)) (* F(xk) + A *)

Compute Jacobian Matrix J(x):
For the (n/Pr) columns of (P,P)

If column j = le(pr,pt)

./(*'),= [1,1,...,1]
else

w<-F(xk+he.) = eig(T(x'+he.)) (* F{x"+he.) + K *)

k w-v
y(*V-— h

Exchange the (nIP) rows with the rows belonging

to the processors (i,pt) i = 0...P-l, i * P,

Solve the linear system J(xk)sk = -F(x):

using the SCALAPACK'S pägesv{J(xk),-F(xk),s,pr,pt)

-287-

FEUP - Faculdade de Engenharia da Universidade do Porto

Update the iterate:
If (pt = 0) (* column 0 processors *)
Update the subvector x adding the subvector s
Broadcast the subvector x

else
Receive the updated subvector x

until the stopping criterion has been reached

The complete computing cost (T) for all the algorithms can by obtained by adding

the arithmetic cost (Ta) plus the communication cost (71). When obtaining T we

must bear in mind the time to execute one floating operation tf. And when obtaining
Tc we must take into account the time used to send a data item T, plus the time to

prepare the message (latency) ß [4] [7]. This gives us the following expression to send
a message composed by n data items:

tc =ß + nt

A more detailed cost analysis can be found in [15]: for our algorithms the complete
computing costs are:

Newton

71=*.
' n n n '
— + — + —

V3P 3P 3 j
tf+(n+ nsfp)t + (nlog2P+ njp)ß

Chord
/ 4 k n

y$p
T=l— + -si- L + (n2 + 2knJp)T + (n log2 P + kcn-Jp)ß .

Shamanksii

T=k — + — + ÜÜL \t +(n +2mn-Jp~)T + (n\og7P + mn*fp)ß
V3P IP 3 '

Storage cost is the same for the three methods: 1) Storing the matrices to compute F,
and 2) Jacobian matrix and the linear system. The cost of 1 consists of storing two
half sized problem matrices replicated in each processor, and the cost of 2 is storing
one problem sized matrix:

«V 2 (P + 2)n
Total cost=2| - P + n =- —

.2) 2

n1 n2

Cost per processor = 1 .

This cost improves that of the algorithms in [11] and [18] because we do not need to
compute and store the eigenvectors.

-288-

VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing

4 Experimental Results

4.1 The tests

We show here a brief study of the performance of the parallel algorithm: we used a
group of 15 problems [15]. Each problem consists of different kinds of spectrum. The
three first types of spectrum are generated randomly, following some statistic distri-
butions. The other 12 types correspond to the eigenvalues of tridiagonal matrices used
as test matrices in several papers [12] [3]. In the latter 12 spectra we can distinguish
between the first 7, where the elements and the spectra are generated using well de-
fined formulas, and the last 5, where the matrices and the spectra are generated using
LAPACK's dlatms [6] routine.
We chose here type 4 of the 15 test problems and applied the Newton's Parallel
method. We used 6 different problem sizes N=200, 256,400, 800, 1200, and 1600.

°1 N=2D0 N=400 N=1200

N=256 N=800 N=1600
-3- (*'/}

,:
yy/ -rf^"*"" /

3
1 1
1 2

I
3

I I
4 5

I I
3 7 8 9 1(

Fig. 3. Speedup figures corresponding to the SGI (left) and the cluster of PC's (right).

The experiments were carried out on two different machines: a SGI multiprocessor
with 10 processors MIPS R10000/195 MHz, and on a cluster of 20 Pentium 11/300
MHz PC's with a Myrinet network. The figures (Fig. 3) show the speedup of our
algorithms. Speedup was obtained with respect to the Chord algorithm because it
performs better than the Powell's method standard algorithm, used in the MINPACK-
1 package [14].
The good performance obtained on both machines can be clearly seen. In both figures
we are near the theoretical maximum speedup. The performance is good even for
small problem sizes.
A scalability study was also carried out. Fig. 4 shows the scaled speedup [10]. N is the
initial size for each case and is increased times a factor k(p) when increasing the
number of processors p (see [10]). For example for the N=200 case, the successive
sizes will be 238,282,313

■289-

FEUP - Faculdade de Engenharia da Universidade do Porto

20-

18-

16-

14-
Q.

I 12- 0)

Jho-
3 = IS 8- o
V)

6

N=2Ö6 N=4Ö0 N=12ÖÖ

N=256 N=800

—I 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Processors

Fig. 4. Scaled speedup corresponding to the cluster of PC's.

Fig. 4 shows that our algorithms are scalable. Performance is specially good for
problems where the initial sizes for the scalability test are small and medium. For
large initial size scalability decreases slightly.

4.2 Performance evaluation compared with the theoretical model

In this section we carried out a theoretical performance analysis for the parallel algo-
rithms. We used the theoretical costs shown in the former sections and a machine
analysis to parameterize our machine. The analysis consists of obtaining the parame-
ters to characterize the machine (tf,T,ß), and with these parameters, the main goal
is to obtain the theoretical behaviour of our algorithms. In our case we performed the
analysis using a network of computers: standard PC's and a Myrinet network, and all
our algorithms.

To obtain tf (the flop time) we could use a standard routine of any of the sequential
libraries, but this time varies too much between different routines, that is to say, for
different algorithms we will obtain different flop times. Another more accurate possi-
bility consists of obtaining tf using our sequential algorithm. With this analysis the
flop time is tf = 0.018 microseconds.

To obtain the communications time, we used the double Ping-Pong algorithm where
one processor sends several different sized messages to another, which then returns
the messages. The measured time in this operation is half that required to send and
give back each message. Sending the minimum sized packages we can obtain the
value of ß, while sending the maximum sized messages we can obtain the value of
T. The value obtained for the latency ß is 33 microseconds, and the value for T is
0.03 microseconds.

-290-

VECPAR '2000 - 4'' International Meeting on Vector and Parallel Processing

We included this study for two reasons: firstly, to test if the theoretical model devel-
oped before is good, and secondly, to be able to predict the behaviour of the algo-
rithm on a computer, using the theoretical model obtained.

10 12 14
Processors

Fig. 5 and 6. Comparing the theoretical speedup model (left) and the experimental speedup
(right).

We can compare the figures corresponding to the theoretical and experimental
speedup models. It can be appreciated that the two figures are very similar. The only
small difference corresponds to small size matrices (200 and 256). In addition the
theoretical speedup is a little better than the experimental. This is normal.

With this analysis we can assume that our theoretical model is good. In principle such
a model could be good to predict the behaviour of the algorithm on the computer,
changing the size of the problem and/or the number of processors.

5 Conclusions

We have developed a new approach to solve the inverse eigenproblem for RST matri-
ces. Our method has several advantages with respect to "state of the art" algorithms.
We solve the problem as a general nonlinear system, using the difference approxima-
tion technique to approximate the Jacobian. This gives a more general perspective on
this problem. We have also managed to reduce storage cost, which allows us to work
with larger problems.
Furthermore, our parallel algorithm is efficient when working with small and medium
sized problems.

With respect to the theoretical model, we think the model is quite close to the experi-
mental model. This is very important because with such a model in principle we can
predict at the behaviour of any algorithm using the parameterized machine (in our
case the Myrinet network). Finally, we note the behaviour of the Myrinet network.
We think it could be a good, cheap alternative to classical MPP machines.

-291

FEUP - Faculdade de Engenharia da Universidade do Porto

6 References

1. Anderson E., Bai Z., Bischof C, Demmel J., Dongarra J., Du Croz J., Greenbaum A.,
Hammarling S., Mackenney A., Ostrouchov S., Sorensen D. (1995). LAPACK Users'
Guide. Second edition. SIAM Publications, Philadelphia

2. Badia J.M., Vidal A.M. (1997). On the bisection Method for the Computation of the Ei-
genvalues of Symmetric Tridiagonal Matrices. Technical Report. DI 01-02/97. Departa-
mento de Informätica. Universidad Jaime I. Castellön.

3. Badia J.M., Vidal A.M. (1999). Solving the Inverse Toeplitz Using SCALAPACK and MPI.
Lecture Notes in Computer Science, 1697 (1999), pp. 372-379. Ed. Springer-Verlag.

4. Blackford L.S., Choi J., Geary A., D'Azevedo E., Demmel J. Dhillon I., Dongarra J.,
Hammarling S., Henry G., Petitet A., Stanley K., Walker D., Whaley R.C. (1997).
SCALAPACK Users'Guide. SIAM Publications, Philadelphia

5. Cantoni, A. and Butler, F. (1976). Eigenvalues and eigenvectors of Symmetric Centrosym-
metric Matrices. Lin. Alg. Appl., no. 13. pp. 275-288.

6. Demmel, J., MacKenney, A. (1992). A Test Matrix Generation Suite, LAPACK Working
Note 9. Courant Institute, New York.

7. Dongarra J.J., Dunigan T. (1995). Message-Passing Performance of Various Computers.
Technical Report UT-CS-95-299. Department of Computer Science. University of Te-
nesse.

8. Golub G. H. , Van Loan C. F. (1996). Matrix Computations (third edition). John Hopkins
University Press.

9. Kelley C.T. (1995). Iterative Methods for Linear and Nonlinear Equations. Frontiers in
Applied Mathematics, SIAM Publications, Philadelphia.

10. Kumar R ., Grama A., Gupta A., Karypis G. (1994). Introduction to Parallel Computing:
Design and Analysis of Algorithms. The Benjamin Cumimngs Publishing Company.

11. Laurie D.P. (1988). A numerical approach to the inverse Toeplitz eigenproblem matrix, J.
Sei. Statist.Comput., 9 (1988), pp .401-405.

12. Ly T.Y., Zeng Z. (1993/ The Laguerre iteration in solving the symmetric tridiagonal
eigenproblem, revisited. SIAM J. Sei. Statist. Compt., vol. 13, no. 5, pp 1145-1173.

13. Myrinet. Myrinet overview. (Online), http://www.myri.com/myrinet/overview/index.html.
14. More J.J., Garbow B.S, Hillstrom K.E, (1980). User Guide for MINPACK-1. Technical

Report. ANL-80-74. Argonne National Laboratory.
15. Peinado J, Vidal A.M. (1999). A new Parallel approach to the Toeplitz Inverse Eigen-

problem using the Newton's Method and Finite Difference techniques. Technical Report.
DSIC-II/15/99. Departamento de Sistemas Informäticos y Computation. Universidad
Politecnica de Valencia.

16. Sun, X.H. (1995). The relation of Scalability and Execution Time. Internal Report. 95-62,
ICASE NASA Langley Research Center, Hampton, VA, 1995.

17. Skjellum A. (1994). Using MPI: Portable Programming with Message-Passing Interface.
MIT Press Group.

18. Trench, W.F. (1997). Numerical Solution of the Inverse Eigenvalue Problem for Real
Symmetric Toeplitz Matrices. SIAM J. Sei. Comput., vol. 18, no. 6. pp. 1722-1736.

19. Whaley R.C. (1994). Basic Linear Algebra Communication Subprograms (BLACS):
Analysis and Implementation Across Multiple Parallel Architectures. Computer Science
Dept. Technical Report CS 94-234, University of Tennesee, Knoxville.

292-

